26
views
0
recommends
+1 Recommend
4 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We sought to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19.

          Methods

          Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analysed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15).

          Findings

          One hundred patients with mild ( n = 24), moderate ( n = 28), and severe ( n = 48) COVID-19 were followed for a median (IQR) of 225 (187–262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0·001), and higher GFAp than controls ( p < 0·001). GFAp was also significantly increased in moderate disease ( p < 0·05) compared with controls. NfL ( r = 0·53, p < 0·001) and GFAp ( r = 0·39, p < 0·001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly fatigue ( n = 40), “brain-fog” ( n = 29), and changes in cognition ( n = 25). We found no correlation between persistent neurological symptoms and CNS injury biomarkers in the acute phase.

          Interpretation

          The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicates that post COVID-19 neurological sequelae are not accompanied by ongoing CNS injury.

          Funding

          The Swedish State Support for Clinical Research, SciLifeLab Sweden, and the Knut and Alice Wallenberg Foundation have provided funding for this project.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

          The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            6-month consequences of COVID-19 in patients discharged from hospital: a cohort study

            Background The long-term health consequences of COVID-19 remain largely unclear. The aim of this study was to describe the long-term health consequences of patients with COVID-19 who have been discharged from hospital and investigate the associated risk factors, in particular disease severity. Methods We did an ambidirectional cohort study of patients with confirmed COVID-19 who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7, 2020, and May 29, 2020. Patients who died before follow-up, patients for whom follow-up would be difficult because of psychotic disorders, dementia, or re-admission to hospital, those who were unable to move freely due to concomitant osteoarthropathy or immobile before or after discharge due to diseases such as stroke or pulmonary embolism, those who declined to participate, those who could not be contacted, and those living outside of Wuhan or in nursing or welfare homes were all excluded. All patients were interviewed with a series of questionnaires for evaluation of symptoms and health-related quality of life, underwent physical examinations and a 6-min walking test, and received blood tests. A stratified sampling procedure was used to sample patients according to their highest seven-category scale during their hospital stay as 3, 4, and 5–6, to receive pulmonary function test, high resolution CT of the chest, and ultrasonography. Enrolled patients who had participated in the Lopinavir Trial for Suppression of SARS-CoV-2 in China received severe acute respiratory syndrome coronavirus 2 antibody tests. Multivariable adjusted linear or logistic regression models were used to evaluate the association between disease severity and long-term health consequences. Findings In total, 1733 of 2469 discharged patients with COVID-19 were enrolled after 736 were excluded. Patients had a median age of 57·0 (IQR 47·0–65·0) years and 897 (52%) were men. The follow-up study was done from June 16, to Sept 3, 2020, and the median follow-up time after symptom onset was 186·0 (175·0–199·0) days. Fatigue or muscle weakness (63%, 1038 of 1655) and sleep difficulties (26%, 437 of 1655) were the most common symptoms. Anxiety or depression was reported among 23% (367 of 1617) of patients. The proportions of median 6-min walking distance less than the lower limit of the normal range were 24% for those at severity scale 3, 22% for severity scale 4, and 29% for severity scale 5–6. The corresponding proportions of patients with diffusion impairment were 22% for severity scale 3, 29% for scale 4, and 56% for scale 5–6, and median CT scores were 3·0 (IQR 2·0–5·0) for severity scale 3, 4·0 (3·0–5·0) for scale 4, and 5·0 (4·0–6·0) for scale 5–6. After multivariable adjustment, patients showed an odds ratio (OR) 1·61 (95% CI 0·80–3·25) for scale 4 versus scale 3 and 4·60 (1·85–11·48) for scale 5–6 versus scale 3 for diffusion impairment; OR 0·88 (0·66–1·17) for scale 4 versus scale 3 and OR 1·77 (1·05–2·97) for scale 5–6 versus scale 3 for anxiety or depression, and OR 0·74 (0·58–0·96) for scale 4 versus scale 3 and 2·69 (1·46–4·96) for scale 5–6 versus scale 3 for fatigue or muscle weakness. Of 94 patients with blood antibodies tested at follow-up, the seropositivity (96·2% vs 58·5%) and median titres (19·0 vs 10·0) of the neutralising antibodies were significantly lower compared with at the acute phase. 107 of 822 participants without acute kidney injury and with estimated glomerular filtration rate (eGFR) 90 mL/min per 1·73 m2 or more at acute phase had eGFR less than 90 mL/min per 1·73 m2 at follow-up. Interpretation At 6 months after acute infection, COVID-19 survivors were mainly troubled with fatigue or muscle weakness, sleep difficulties, and anxiety or depression. Patients who were more severely ill during their hospital stay had more severe impaired pulmonary diffusion capacities and abnormal chest imaging manifestations, and are the main target population for intervention of long-term recovery. Funding National Natural Science Foundation of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, and Peking Union Medical College Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Post-acute COVID-19 syndrome

              Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in global healthcare crises and strained health resources. As the population of patients recovering from COVID-19 grows, it is paramount to establish an understanding of the healthcare issues surrounding them. COVID-19 is now recognized as a multi-organ disease with a broad spectrum of manifestations. Similarly to post-acute viral syndromes described in survivors of other virulent coronavirus epidemics, there are increasing reports of persistent and prolonged effects after acute COVID-19. Patient advocacy groups, many members of which identify themselves as long haulers, have helped contribute to the recognition of post-acute COVID-19, a syndrome characterized by persistent symptoms and/or delayed or long-term complications beyond 4 weeks from the onset of symptoms. Here, we provide a comprehensive review of the current literature on post-acute COVID-19, its pathophysiology and its organ-specific sequelae. Finally, we discuss relevant considerations for the multidisciplinary care of COVID-19 survivors and propose a framework for the identification of those at high risk for post-acute COVID-19 and their coordinated management through dedicated COVID-19 clinics.
                Bookmark

                Author and article information

                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                The Authors. Published by Elsevier B.V.
                2352-3964
                29 July 2021
                August 2021
                29 July 2021
                : 70
                : 103512
                Affiliations
                [a ]Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                [b ]Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
                [c ]Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
                [d ]Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
                [e ]Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                [f ]Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
                [g ]King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
                [h ]NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
                [i ]Research, Education, Development and Innovation, Primary Health Care, Region Västra Götaland, Sweden
                [j ]General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                [k ]Department of Anaesthesiology and Intensive care, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                [l ]Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
                [m ]UK Dementia Research Institute at UCL, London, UK
                Author notes
                [* ]Corresponding author at: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
                [1]

                These authors are contributed equally to this work.

                Article
                S2352-3964(21)00305-4 103512
                10.1016/j.ebiom.2021.103512
                8320425
                34333238
                7d6b2302-34f8-4fdc-888f-958726c847f4
                © 2021 The Authors. Published by Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 7 May 2021
                : 30 June 2021
                : 16 July 2021
                Categories
                Research Paper

                sars-cov-2,covid-19,cns,nfl,gfap,gdf-15
                sars-cov-2, covid-19, cns, nfl, gfap, gdf-15

                Comments

                Comment on this article