7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impacts of climate change on tropical agroforestry systems: A systematic review for identifying future research priorities

      , , , ,
      Frontiers in Forests and Global Change
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change is expected to adversely affect the crop yields and food security for many smallholder farmers in the tropics unless adaptive measures are implemented. Agroforestry ecosystem services, such as micro-climate buffering, have received growing attention from the academic and policy communities for alleviating the negative impacts of climate change on smallholders. These benefits imply that agroforestry could offer a suitable measure for adaptation to climate change. However, whether agroforestry systems themselves succumb to the adverse effects of climate change is often less studied in the agroforestry literature. Consequently, less is known about how climate change will impact agroforests. We conducted a systematic review, which included an evidence quality assessment, to examine the impacts of climate change on tropical agroforestry systems (TAFS). Based primarily on studies undertaking biophysical approaches, we found that climate change negatively impacts TAFS by reducing tree growth, intensifying tree-crop resource competition and reducing crop yields. However, the impacts on smallholder farmers are less clear due to limited evidence in the relevant literature. We found that the evidence supporting our findings is mostly “robust”, although “least robust” strength evidence was also commonly found. We conclude that to improve understanding of how climate change could affect the performance of TAFS as a social ecological system, more interdisciplinary studies are required. Furthermore, to improve the quality of evidence in the research field, studies should explore using mountain elevation gradients for climate analog analysis to perform the most robust study designs. We provide an interdisciplinary conceptual model, which considers the interactions and feedbacks between TAFS components noted from our review to predict the response of ecosystem services provisioning and farmers' wellbeing to climate change, to guide interdisciplinary studies using climate analog analysis.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Complexity of coupled human and natural systems.

          Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises. Furthermore, past couplings have legacy effects on present conditions and future possibilities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Projections of temperature-related excess mortality under climate change scenarios

            Summary Background Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks. Funding UK Medical Research Council.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ROSES RepOrting standards for Systematic Evidence Syntheses: pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps

                Bookmark

                Author and article information

                Journal
                Frontiers in Forests and Global Change
                Front. For. Glob. Change
                Frontiers Media SA
                2624-893X
                August 22 2022
                August 22 2022
                : 5
                Article
                10.3389/ffgc.2022.880621
                7d5828f7-993f-485a-a708-5a7628198fb5
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article