2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transmissibility and pathogenicity of SARS-CoV-2 variants in animal models

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As of February 2022, SARS-CoV-2 is still one of the most serious public health threats due to its high mortality rate and rapid spread of novel variants. Since the first outbreak in 2019, general understanding of SARS-CoV-2 has been improved through basic and clinical studies; however, knowledge gaps still exist in our understanding of the emerging novel SARSCoV-2 variants, which impacts the corresponding development of vaccines and therapeutics. Especially, accumulation of mutations in SARS-CoV-2 and rapid spread in populations with previous immunity has resulted in selection of variants that evade the host immune response. This phenomenon threatens to render current SARS-CoV-2 vaccines ineffective for controlling the pandemic. Proper animal models are essential for detailed investigations into the viral etiology, transmission and pathogenesis mechanisms, as well as evaluation of the efficacy of vaccine candidates against recent SARS-CoV-2 variants. Further, the choice of animal model for each research topic is important for researchers to gain better knowledge of recent SARS-CoV-2 variants. Here, we review the advantages and limitations of each animal model, including mice, hamsters, ferrets, and non-human primates, to elucidate variant SARS-CoV-2 etiology and transmission and to evaluate therapeutic and vaccine efficacy.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The species Severe acute respiratory syndrome-related coronavirus : classifying 2019-nCoV and naming it SARS-CoV-2

            The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus

              The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.
                Bookmark

                Author and article information

                Contributors
                choiki55@chungbuk.ac.kr , choiki55@ibs.re.kr
                Journal
                J Microbiol
                J Microbiol
                Journal of Microbiology (Seoul, Korea)
                The Microbiological Society of Korea (Seoul )
                1225-8873
                1976-3794
                2 March 2022
                2022
                : 60
                : 3
                : 255-267
                Affiliations
                [1 ]GRID grid.410720.0, ISNI 0000 0004 1784 4496, Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, , Institute for Basic Science (IBS), ; Daejeon, 34126 Republic of Korea
                [2 ]GRID grid.254229.a, ISNI 0000 0000 9611 0917, College of Medicine and Medical Research Institute, , Chungbuk National University, ; Cheongju, 28644 Republic of Korea
                Article
                2033
                10.1007/s12275-022-2033-z
                8890026
                35235177
                7d39b5e2-ac08-4741-8da3-9b8e2d844b84
                © The Microbiological Society of Korea 2022

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 28 January 2022
                : 16 February 2022
                : 17 February 2022
                Categories
                Review
                Custom metadata
                © The Microbiological Society of Korea and Springer Nature B.V. 2022

                sars-cov-2,animal models,variants,transmissibility,pathogenicity

                Comments

                Comment on this article