134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-walled carbon nanotube networks for flexible and printed electronics

      Semiconductor Science and Technology
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          Band gap fluorescence from individual single-walled carbon nanotubes.

          Fluorescence has been observed directly across the band gap of semiconducting carbon nanotubes. We obtained individual nanotubes, each encased in a cylindrical micelle, by ultrasonically agitating an aqueous dispersion of raw single-walled carbon nanotubes in sodium dodecyl sulfate and then centrifuging to remove tube bundles, ropes, and residual catalyst. Aggregation of nanotubes into bundles otherwise quenches the fluorescence through interactions with metallic tubes and substantially broadens the absorption spectra. At pH less than 5, the absorption and emission spectra of individual nanotubes show evidence of band gap-selective protonation of the side walls of the tube. This protonation is readily reversed by treatment with base or ultraviolet light.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transparent, conductive carbon nanotube films.

            We describe a simple process for the fabrication of ultrathin, transparent, optically homogeneous, electrically conducting films of pure single-walled carbon nanotubes and the transfer of those films to various substrates. For equivalent sheet resistance, the films exhibit optical transmittance comparable to that of commercial indium tin oxide in the visible spectrum, but far superior transmittance in the technologically relevant 2- to 5-micrometer infrared spectral band. These characteristics indicate broad applicability of the films for electrical coupling in photonic devices. In an example application, the films are used to construct an electric field-activated optical modulator, which constitutes an optical analog to the nanotube-based field effect transistor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures.

              Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Semiconductor Science and Technology
                Semicond. Sci. Technol.
                IOP Publishing
                0268-1242
                1361-6641
                July 01 2015
                July 01 2015
                June 09 2015
                : 30
                : 7
                : 074001
                Article
                10.1088/0268-1242/30/7/074001
                7cdbec6d-1ded-43e0-b825-135da25ddb55
                © 2015

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article