37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The multi-targeted tyrosine kinase inhibitor vandetanib plays a bifunctional role in non-small cell lung cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vandetanib, a multikinase inhibitor, is a target of drug treatments for non-small cell lung cancer (NSCLC). However, phase II and III clinical trials have not conclusively demonstrated the curative effects of vandetanib for NSCLC, and the reasons for this are unknown. In the present study, we use the NSCLC cell line Calu-6 as a model to determine the cellular and biological effects of vandetanib. Our results demonstrate that vandetanib impairs Calu-6 cell migration and invasion. We find that vandetanib can directly inhibit RET activity, which influences the Rho-JNK pathway. Overexpression of a constitutively active Rho GTPase antagonizes the inhibitory effects of vandetanib on Calu-6 cells invasion and JNK pathway activation. In addition, vandetanib induces autophagy by increasing the level of reactive oxygen species (ROS) in Calu-6 cells, and blockade of autophagy or ROS effectively enhances the cell death effect of vandetanib. In this study, we find vandetanib is of a double effect in some NSCLC cells, presenting new possibilities for the pharmacological treatment of NSCLC and introducing a novel role for vandetanib in treatment options.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing.

          The identification of the molecular events that drive cancer transformation is essential to the development of targeted agents that improve the clinical outcome of lung cancer. Many studies have reported genomic driver mutations in non-small-cell lung cancers (NSCLCs) over the past decade; however, the molecular pathogenesis of >40% of NSCLCs is still unknown. To identify new molecular targets in NSCLCs, we performed the combined analysis of massively parallel whole-genome and transcriptome sequencing for cancer and paired normal tissue of a 33-yr-old lung adenocarcinoma patient, who is a never-smoker and has no familial cancer history. The cancer showed no known driver mutation in EGFR or KRAS and no EML4-ALK fusion. Here we report a novel fusion gene between KIF5B and the RET proto-oncogene caused by a pericentric inversion of 10p11.22-q11.21. This fusion gene overexpresses chimeric RET receptor tyrosine kinase, which could spontaneously induce cellular transformation. We identified the KIF5B-RET fusion in two more cases out of 20 primary lung adenocarcinomas in the replication study. Our data demonstrate that a subset of NSCLCs could be caused by a fusion of KIF5B and RET, and suggest the chimeric oncogene as a promising molecular target for the personalized diagnosis and treatment of lung cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration.

            ZD6474 [N-(4-bromo-2-fluorophenyl)-6-methoxy-7-[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine]is a potent, p.o. active, low molecular weight inhibitor of kinase insert domain-containing receptor [KDR/vascular endothelial growth factor receptor (VEGFR) 2] tyrosine kinase activity (IC(50) = 40 nM). This compound has some additional activity versus the tyrosine kinase activity of fms-like tyrosine kinase 4 (VEGFR3;IC(50) = 110 nM) and epidermal growth factor receptor (EGFR/HER1; IC(50) = 500 nM) and yet demonstrates selectivity against a range of other tyrosine and serine-threonine kinases. The activity of ZD6474 versus KDR tyrosine kinase translates into potent inhibition of vascular endothelial growth factor-A (VEGF)-stimulated endothelial cell (human umbilical vein endothelial cell) proliferation in vitro (IC(50) = 60 nM). Selective inhibition of VEGF signaling has been demonstrated in vivo in a growth factor-induced hypotension model in anesthetized rat: administration of ZD6474 (2.5 mg/kg, i.v.) reversed a hypotensive change induced by VEGF (by 63%) but did not significantly affect that induced by basic fibroblast growth factor. Once-daily oral administration of ZD6474 to growing rats for 14 days produced a dose-dependent increase in the femoro-tibial epiphyseal growth plate zone of hypertrophy, which is consistent with inhibition of VEGF signaling and angiogenesis in vivo. Administration of 50 mg/kg/day ZD6474 (once-daily, p.o.) to athymic mice with intradermally implanted A549 tumor cells also inhibited tumor-induced neovascularization significantly (63% inhibition after 5 days; P 70%) in CD31 (endothelial cell) staining in nonnecrotic regions. ZD6474 also restrained growth of much larger (0.9 cm(3) volume) Calu-6 lung tumor xenografts and induced profound regression in established PC-3 prostate tumors of 1.4 cm(3) volume. ZD6474 is currently in Phase I clinical development as a once-daily oral therapy in patients with advanced cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases.

              RET/papillary thyroid carcinoma (PTC) oncogenes, generated by recombination of the tyrosine kinase-encoding domain of RET with different heterologous genes, are prevalent in papillary carcinomas of the thyroid. Point mutations of RET cause multiple endocrine neoplasia type 2 (MEN2) familial cancer syndrome and are found in sporadic medullary thyroid carcinomas. Here, we show that ZD6474, a low molecular weight tyrosine kinase inhibitor, blocks the enzymatic activity of RET-derived oncoproteins at a one-half maximal inhibitory concentration of 100 nM. ZD6474 blocked in vivo phosphorylation and signaling of the RET/PTC3 and RET/MEN2B oncoproteins and of an epidermal growth factor (EGF)-activated EGF-receptor/RET chimeric receptor. RET/PTC3-transformed cells-treated ZD6474 lost proliferative autonomy and showed morphological reversion. ZD6474 prevented the growth of two human PTC cell lines that carry spontaneous RET/PTC1 rearrangements. Finally, it blocked anchorage-independent growth of RET/PTC3-transformed NIH3T3 fibroblasts and the formation of tumors after injection of NIH-RET/PTC3 cells into nude mice. Thus, targeting RET oncogenes with ZD6474 might offer a potential treatment strategy for carcinomas sustaining oncogenic activation of RET.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                27 February 2015
                2015
                : 5
                : 8629
                Affiliations
                [1 ]Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai. 200127, People's Republic of China
                [2 ]Shanghai Institute of Hematology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai. 200025, People's Republic of China
                [3 ]State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai. 200032, People's Republic of China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep08629
                10.1038/srep08629
                4342569
                25720956
                7ca2807f-d8b2-41ff-bf10-9c0b68b8dc4a
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 12 October 2014
                : 28 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article