44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoparticles Escaping RES and Endosome: Challenges for siRNA Delivery for Cancer Therapy

      ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small interfering RNAs (siRNAs) technology has emerged as a promising potential treatment for viral, genetic diseases and cancers. Despite the powerful therapeutic potential of siRNA, there are challenges for developing efficient and specific delivery systems for systemic administration. There are extracellular and intracellular barriers for nanoparticle-mediated delivery. First, nanoparticles are rapidly cleared from the circulation by the reticuloendothelial system (RES). Second, following their cellular uptake, nanoparticles are trapped in endosomes/lysosomes, where siRNA would be degraded by enzymes. In this review, we describe strategies for grafting a polyethylene glycol (PEG) brush to the nanoparticles for evading RES, such that they may effectively accumulate in the tumor by the enhanced permeability and retention (EPR) effect. PEG has to shed from the nanoparticles to allow close interaction with the tumor cells. Current strategies for facilitating endosome escape, such as ion pair formation, “proton sponge effect”, destabilizing endosome membrane, and hydrophobic modification of the vector, are discussed.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Knocking down barriers: advances in siRNA delivery

          Key Points RNA interference (RNAi) is a fundamental pathway in eukaryotic cells by which sequence-specific small interfering RNA (siRNA) is able to silence genes through the destruction of complementary mRNA. RNAi is an important therapeutic tool that can be used to silence aberrant endogenous genes or to knockdown genes essential to the proliferation of infectious organisms. Delivery remains the central challenge to the therapeutic application of RNAi technology. Before siRNA can take effect in the cytoplasm of a target cell, it must be transported through the body to the target site without undergoing clearance or degradation. Currently, the most effective synthetic, non-viral delivery agents of siRNA are lipids, lipid-like materials and polymers. Various cationic agents including stable nucleic acid–lipid particles, lipidoids, cyclodextrin polymers and polyethyleneimine polymers have been used to achieve the successful systemic delivery of siRNA in mammals without inducing significant toxicity. Direct conjugation of delivery agents to siRNA can facilitate delivery. For example, cholesterol-modified siRNA enables targeting to the liver. RNAi therapeutics have progressed to the clinic, where studies are being conducted to determine siRNA efficacy in treating several diseases, including age-related macular degeneration and respiratory syncytial virus. Moving forward, it will be important to pay close attention to the potential nonspecific immunostimulatory effects of siRNA. Modifications to siRNA can be used to minimize stimulation of the immune system, and an increased emphasis must be placed on performing proper controls to ensure that therapeutic effects are sequence-specific.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design and development of polymers for gene delivery.

            The lack of safe and efficient gene-delivery methods is a limiting obstacle to human gene therapy. Synthetic gene-delivery agents, although safer than recombinant viruses, generally do not possess the required efficacy. In recent years, a variety of effective polymers have been designed specifically for gene delivery, and much has been learned about their structure-function relationships. With the growing understanding of polymer gene-delivery mechanisms and continued efforts of creative polymer chemists, it is likely that polymer-based gene-delivery systems will become an important tool for human gene therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.

              In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has been proposed first to separate the two siRNA strands, then the resulting single-stranded guide is thought to bind Ago2. Here, we show that Ago2 instead directly receives the double-stranded siRNA from the RISC assembly machinery. Ago2 then cleaves the siRNA passenger strand, thereby liberating the single-stranded guide. For siRNAs, virtually all RISC is assembled through this cleavage-assisted mechanism. In contrast, passenger-strand cleavage is not important for the incorporation of miRNAs that derive from mismatched duplexes.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2011
                2011
                : 2011
                :
                : 1-12
                Article
                10.1155/2011/742895
                21808638
                7c99bb5d-8b1e-423b-9873-bfbd82bc2889
                © 2011

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article