4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Filtration performances of non-medical materials as candidates for manufacturing facemasks and respirators

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent outbreak of the coronavirus disease (COVID-19) is causing a shortage of personal protective equipment (PPE) in different countries around the world. Because the coronavirus can transmit through droplets and aerosols, facemasks and N95 respirators that require complex certification, are urgently needed. Given the situation, the U.S. Centers for Disease Control and Prevention (CDC) recommends that “in settings where facemasks are not available, healthcare personnel might use homemade masks (e.g., bandana, scarf) for the care of patients with COVID-19 as a last resort.” Although aerosols and droplets can be removed through the fibers of fabrics through a series of filtration mechanisms, their filtration performances have not been evaluated in detail. Moreover, there are a series of non-medical materials available on the market, such as household air filters, coffee filters, and different types of fabrics, which may be useful when facemasks and respirators are not available. In this study, we comprehensively evaluated the overall and size-dependent filtration performances of non-medical materials. The experiments were conducted under different face velocities to study its influence on size-dependent filtration performances. The flow resistance across these filter materials is measured as an indicator of the breathability of the materials. The results illustrate that multiple layers of household air filters are able to achieve similar filtration efficiencies compared to the N95 material without causing a significant increase in flow resistance. Considering that these air filters may shed micrometer fibers during the cutting and folding processes, it is recommended that these filters should be inserted in multiple layers of fabrics when manufacturing facemasks or respirators.

          Highlights

          • Agencies suggest the manufacturing of homemade face masks during COVID-19.

          • This work examined a wide range of non-medical materials for their filtration performance.

          • We studied the influences of face velocity, number of filter material layers, and the size-dependent filtration efficiency.

          • Several layers of household air filters can achieve similar filtration performance compared to N95 materials.

          • The information will be crucial for healthcare personnel and the general public in manufacturing homemade face masks.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals

            The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks

              The emergence of a pandemic affecting the respiratory system can result in a significant demand for face masks. This includes the use of cloth masks by large sections of the public, as can be seen during the current global spread of COVID-19. However, there is limited knowledge available on the performance of various commonly available fabrics used in cloth masks. Importantly, there is a need to evaluate filtration efficiencies as a function of aerosol particulate sizes in the 10 nm to 10 μm range, which is particularly relevant for respiratory virus transmission. We have carried out these studies for several common fabrics including cotton, silk, chiffon, flannel, various synthetics, and their combinations. Although the filtration efficiencies for various fabrics when a single layer was used ranged from 5 to 80% and 5 to 95% for particle sizes of 300 nm, respectively, the efficiencies improved when multiple layers were used and when using a specific combination of different fabrics. Filtration efficiencies of the hybrids (such as cotton–silk, cotton–chiffon, cotton–flannel) was >80% (for particles 90% (for particles >300 nm). We speculate that the enhanced performance of the hybrids is likely due to the combined effect of mechanical and electrostatic-based filtration. Cotton, the most widely used material for cloth masks performs better at higher weave densities (i.e., thread count) and can make a significant difference in filtration efficiencies. Our studies also imply that gaps (as caused by an improper fit of the mask) can result in over a 60% decrease in the filtration efficiency, implying the need for future cloth mask design studies to take into account issues of “fit” and leakage, while allowing the exhaled air to vent efficiently. Overall, we find that combinations of various commonly available fabrics used in cloth masks can potentially provide significant protection against the transmission of aerosol particles.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Hyg Environ Health
                Int J Hyg Environ Health
                International Journal of Hygiene and Environmental Health
                Elsevier GmbH.
                1438-4639
                1618-131X
                21 July 2020
                August 2020
                21 July 2020
                : 229
                : 113582
                Affiliations
                [a ]Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
                [b ]Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, 1521, USA
                Author notes
                []Corresponding author. yangwang@ 123456mst.edu
                Article
                S1438-4639(20)30528-9 113582
                10.1016/j.ijheh.2020.113582
                7373391
                32917368
                7c4eb4bc-cff0-49e3-9d80-5980125720c7
                © 2020 Elsevier GmbH. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 10 April 2020
                : 15 June 2020
                : 15 June 2020
                Categories
                Article

                homemade facemasks,respirators,filter materials,household air filter,filtration efficiency,aerosols

                Comments

                Comment on this article