18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology

      1 , 1 , 2
      Critical Reviews in Biochemistry and Molecular Biology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Sirtuins are NAD <sup>+</sup>-dependent protein deacylases/ADP-ribosyltransferases that have emerged as candidate targets for new therapeutics to treat metabolic disorders and other diseases, including cancer. The sirtuin SIRT5 resides primarily in the mitochondrial matrix, and catalyzes the removal of negatively charged lysine acyl modifications; succinyl, malonyl, and glutaryl groups. Evidence has now accumulated to document the roles of SIRT5 as a significant regulator of cellular homeostasis, in a context- and cell-type specific manner, as has been observed previously for other sirtuin family members. SIRT5 regulates protein substrates involved in glycolysis, TCA cycle, fatty acid oxidation, electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification, among other processes. SIRT5 plays pivotal roles in cardiac physiology and stress responses, and is involved in the regulation of numerous aspects of myocardial energy metabolism. SIRT5 is implicated in neoplasia, as both a tumor promoter and suppressor in a context-specific manner, and may serve a protective function in the setting of neurodegenerative disorders. Here, we review the current understanding of functional impacts of SIRT5 on its metabolic targets, and its molecular functions in both normal and pathological conditions. Finally, we will discuss the potential utility of SIRT5 as a drug target and also summarize the current status, progress, and challenges in developing small molecule compounds to modulate SIRT5 activity with high potency and specificity. </p>

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Database resources of the National Center for Biotechnology Information

          Abstract The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. The Entrez system provides search and retrieval operations for most of these data from 39 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. New resources released in the past year include PubMed Data Management, RefSeq Functional Elements, genome data download, variation services API, Magic-BLAST, QuickBLASTp, and Identical Protein Groups. Resources that were updated in the past year include the genome data viewer, a human genome resources page, Gene, virus variation, OSIRIS, and PubChem. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

            Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis.

              Tumor-specific pyruvate kinase M2 (PKM2) is essential for the Warburg effect. In addition to its well-established role in aerobic glycolysis, PKM2 directly regulates gene transcription. However, the mechanism underlying this nonmetabolic function of PKM2 remains elusive. We show here that PKM2 directly binds to histone H3 and phosphorylates histone H3 at T11 upon EGF receptor activation. This phosphorylation is required for the dissociation of HDAC3 from the CCND1 and MYC promoter regions and subsequent acetylation of histone H3 at K9. PKM2-dependent histone H3 modifications are instrumental in EGF-induced expression of cyclin D1 and c-Myc, tumor cell proliferation, cell-cycle progression, and brain tumorigenesis. In addition, levels of histone H3 T11 phosphorylation correlate with nuclear PKM2 expression levels, glioma malignancy grades, and prognosis. These findings highlight the role of PKM2 as a protein kinase in its nonmetabolic functions of histone modification, which is essential for its epigenetic regulation of gene expression and tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Biochemistry and Molecular Biology
                Critical Reviews in Biochemistry and Molecular Biology
                Informa UK Limited
                1040-9238
                1549-7798
                March 22 2018
                May 04 2018
                April 11 2018
                May 04 2018
                : 53
                : 3
                : 311-334
                Affiliations
                [1 ] Department of Pathology, University of Michigan, Ann Arbor, MI, USA;
                [2 ] Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
                Article
                10.1080/10409238.2018.1458071
                6233320
                29637793
                7c3a4640-7c0b-46fb-9f76-3c1b9e6a2a46
                © 2018
                History

                Comments

                Comment on this article