3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment

      review-article
      , ,
      Heliyon
      Elsevier
      Osteoarthritis, Drug delivery, Biomedicine, Biomaterials, Regeneration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoarthritis.

          Osteoarthritis is a major source of pain, disability, and socioeconomic cost worldwide. The epidemiology of the disorder is complex and multifactorial, with genetic, biological, and biomechanical components. Aetiological factors are also joint specific. Joint replacement is an effective treatment for symptomatic end-stage disease, although functional outcomes can be poor and the lifespan of prostheses is limited. Consequently, the focus is shifting to disease prevention and the treatment of early osteoarthritis. This task is challenging since conventional imaging techniques can detect only quite advanced disease and the relation between pain and structural degeneration is not close. Nevertheless, advances in both imaging and biochemical markers offer potential for diagnosis and as outcome measures for new treatments. Joint-preserving interventions under development include lifestyle modification and pharmaceutical and surgical modalities. Some show potential, but at present few have proven ability to arrest or delay disease progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoarthritis.

            Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population and mainly affects the diarthrodial joints. Primary OA results from a combination of risk factors, with increasing age and obesity being the most prominent. The concept of the pathophysiology is still evolving, from being viewed as cartilage-limited to a multifactorial disease that affects the whole joint. An intricate relationship between local and systemic factors modulates its clinical and structural presentations, leading to a common final pathway of joint destruction. Pharmacological treatments are mostly related to relief of symptoms and there is no disease-modifying OA drug (that is, treatment that will reduce symptoms in addition to slowing or stopping the disease progression) yet approved by the regulatory agencies. Identifying phenotypes of patients will enable the detection of the disease in its early stages as well as distinguish individuals who are at higher risk of progression, which in turn could be used to guide clinical decision making and allow more effective and specific therapeutic interventions to be designed. This Primer is an update on the progress made in the field of OA epidemiology, quality of life, pathophysiological mechanisms, diagnosis, screening, prevention and disease management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.

              Osteoarthritis (OA) is associated with cartilage destruction, subchondral bone remodeling and inflammation of the synovial membrane, although the etiology and pathogenesis underlying this debilitating disease are poorly understood. Secreted inflammatory molecules, such as proinflammatory cytokines, are among the critical mediators of the disturbed processes implicated in OA pathophysiology. Interleukin (IL)-1β and tumor necrosis factor (TNF), in particular, control the degeneration of articular cartilage matrix, which makes them prime targets for therapeutic strategies. Animal studies provide support for this approach, although only a few clinical studies have investigated the efficacy of blocking these proinflammatory cytokines in the treatment of OA. Apart from IL-1β and TNF, several other cytokines including IL-6, IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor and IL-8 (a chemokine) have also been shown to be implicated in OA and could possibly be targeted therapeutically. This Review discusses the current knowledge regarding the role of proinflammatory cytokines in the pathophysiology of OA and addresses the potential of anticytokine therapy in the treatment of this disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                01 November 2023
                November 2023
                01 November 2023
                : 9
                : 11
                : e21544
                Affiliations
                [1]Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
                Author notes
                []Corresponding author. 555 Friendship East Road, Nanshaomen, Xi'an City, Shaanxi Province, 710054, China. wyj15332409556@ 123456163.com
                Article
                S2405-8440(23)08752-2 e21544
                10.1016/j.heliyon.2023.e21544
                10682535
                38034809
                7c111b72-fe2f-4d75-9b39-7bb5107b39e2
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 June 2023
                : 23 October 2023
                : 23 October 2023
                Categories
                Review Article

                osteoarthritis,drug delivery,biomedicine,biomaterials,regeneration

                Comments

                Comment on this article