19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fecal and Mucosal Microbiota Profiling in Irritable Bowel Syndrome and Inflammatory Bowel Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An imbalance in the bacterial species resulting in the loss of intestinal homeostasis has been described in inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS). In this prospective study, we investigated whether IBD and IBS patients exhibit specific changes in richness and distribution of fecal and mucosal-associated microbiota. Additionally, we assessed potential 16S rRNA gene amplicons biomarkers for IBD, IBS, and controls (CTRLs) by comparison of taxonomic composition. The relative abundance of bacteria, at phylum and genus/species levels, and the bacterial diversity were determined through 16S rRNA sequence-based fecal and mucosal microbiota analysis. Linear discriminant analysis effect size (LEfSe) was used for biomarker discovery associated to IBD and IBS as compared to CTRLs. In fecal and mucosal samples, the microbiota richness was characterized by a microbial diversity reduction, going from CTRLs to IBS to IBD. β-diversity analysis showed a clear separation between IBD and CTRLs and between IBD and IBS with no significant separation between IBS and CTRLs. β-diversity showed a clear separation between mucosa and stool samples in all the groups. In IBD, there was no difference between inflamed and not inflamed mucosa. Based upon the LEfSe data, the Anaerostipes and Ruminococcaceae were identified as the most differentially abundant bacterial taxa in CTRLs. Erysipelotrichi was identified as potential biomarker for IBS, while Gammaproteobacteria, Enterococcus, and Enterococcaceae for IBD. This study provides an overview of the alterations of microbiota and may aid in identifying potential 16S rRNA gene amplicons mucosal biomarkers for IBD and IBS.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found

          The Immune Response to Prevotella Bacteria in Chronic Inflammatory Disease.

          The microbiota plays a central role in human health and disease by shaping immune development, immune responses, metabolism, and protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease modulating bacteria. Emerging studies in humans have linked increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders, and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of asthma and COPD. Increased Prevotella abundance is associated with augmented Th17-mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate, that Prevotella predominantly activate TLR2 leading to production of Th17-polarizing cytokines by antigen presenting cells, including IL-23 and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria, and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared to strict commensal bacteria, Prevotella exhibit increased inflammatory properties as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation. This article is protected by copyright. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases.

            Gut microbiota metabolises bile acids (BA). As dysbiosis has been reported in inflammatory bowel diseases (IBD), we aim to investigate the impact of IBD-associated dysbiosis on BA metabolism and its influence on the epithelial cell inflammation response. Faecal and serum BA rates, expressed as a proportion of total BA, were assessed by high-performance liquid chromatography tandem mass spectrometry in colonic IBD patients (42) and healthy subjects (29). The faecal microbiota composition was assessed by quantitative real-time PCR. Using BA profiles and microbiota composition, cluster formation between groups was generated by ranking models. The faecal BA profiles in germ-free and conventional mice were compared. Direct enzymatic activities of BA biotransformation were measured in faeces. The impact of BA on the inflammatory response was investigated in vitro using Caco-2 cells stimulated by IL-1β. IBD-associated dysbiosis was characterised by a decrease in the ratio between Faecalibacterium prausntizii and Escherichia coli. Faecal-conjugated BA rates were significantly higher in active IBD, whereas, secondary BA rates were significantly lower. Interestingly, active IBD patients exhibited higher levels of faecal 3-OH-sulphated BA. The deconjugation, transformation and desulphation activities of the microbiota were impaired in IBD patients. In vitro, secondary BA exerted anti-inflammatory effects, but sulphation of secondary BAs abolished their anti-inflammatory properties. Impaired microbiota enzymatic activity observed in IBD-associated dysbiosis leads to modifications in the luminal BA pool composition. Altered BA transformation in the gut lumen can erase the anti-inflammatory effects of some BA species on gut epithelial cells and could participate in the chronic inflammation loop of IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease.

              The composition and spatial organization of the mucosal flora in biopsy specimens from patients with inflammatory bowel disease (IBD; either Crohn's disease or ulcerative colitis), self-limiting colitis, irritable-bowel syndrome (IBS), and healthy controls were investigated by using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. Each group included 20 subjects. Ten patients who had IBD and who were being treated with antibiotics were also studied. Use of nonaqueous Carnoy fixative to preserve the mucus layer was crucial for detection of bacteria adherent to the mucosal surface (mucosal bacteria). No biofilm was detectable in formalin-fixed biopsy specimens. Mucosal bacteria were found at concentrations greater than 10(9)/ml in 90 to 95% of IBD patients, 95% of patients with self-limiting colitis, 65% of IBS patients, and 35% of healthy controls. The mean density of the mucosal biofilm was 2 powers higher in IBD patients than in patients with IBS or controls, and bacteria were mostly adherent. Bacteroides fragilis was responsible for >60% of the biofilm mass in patients with IBD but for only 30% of the biofilm mass in patients with self-limiting colitis and 40% of the biofilm in IBS patients but for <15% of the biofilm in IBD patients. In patients treated with (5-ASA) or antibiotics, the biofilm could be detected with 4,6-diamidino-2-phenylindole but did not hybridize with fluorescence in situ hybridization probes. A Bacteroides fragilis biofilm is the main feature of IBD. This was not previously recognized due to a lack of appropriate tissue fixation. Both 5-ASA and antibiotics suppress but do not eliminate the adherent biofilm.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                17 July 2019
                2019
                : 10
                : 1655
                Affiliations
                [1] 1Department of Infectious Diseases, Istituto Superiore di Sanità , Rome, Italy
                [2] 2Gastrointestinal Unit, Department of Systems Medicine, University of Rome Tor Vergata , Rome, Italy
                [3] 3Human Microbiome Unit, Bambino Gesù Children’s Hospital, IRCCS , Rome, Italy
                [4] 4Unit of Digestive Disease, Campus Bio-Medico University , Rome, Italy
                [5] 5Unit of Medical Statistics and Molecular Epidemiology, Campus Bio-Medico University , Rome, Italy
                [6] 6Unit of Clinical Laboratory Science, Campus Bio-Medico University , Rome, Italy
                [7] 7Human Microbiome Unit and Parasitology Unit, Bambino Gesù Children’s Hospital, IRCCS , Rome, Italy
                Author notes

                Edited by: Steve Lindemann, Purdue University, United States

                Reviewed by: Jennifer Mobberley, University of California, Santa Barbara, United States; Eamonn M. Quigley, University College Cork, Ireland

                *Correspondence: Alessandra Lo Presti, alessandra.lopresti@ 123456iss.it

                These authors have contributed equally to this work

                These authors have contributed equally to this work as co-senior authors

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01655
                6650632
                31379797
                7c07301c-53ad-403f-ad60-67ea4d675931
                Copyright © 2019 Lo Presti, Zorzi, Del Chierico, Altomare, Cocca, Avola, De Biasio, Russo, Cella, Reddel, Calabrese, Biancone, Monteleone, Cicala, Angeletti, Ciccozzi, Putignani and Guarino.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 December 2018
                : 04 July 2019
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 77, Pages: 14, Words: 0
                Funding
                Funded by: Ministero della Salute 10.13039/501100003196
                Award ID: WFR GR-2011-02350817
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut microbiota,irritable bowel syndrome,inflammatory bowel disease,dysbiosis,inflammation

                Comments

                Comment on this article