173
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between Serum Perfluorooctanoic Acid (PFOA) and Thyroid Disease in the U.S. National Health and Nutrition Examination Survey

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Perfluorooctanoic acid (PFOA, also known as C8) and perfluorooctane sulfonate (PFOS) are stable compounds with many industrial and consumer uses. Their persistence in the environment plus toxicity in animal models has raised concern over low-level chronic exposure effects on human health.

          Objectives

          We estimated associations between serum PFOA and PFOS concentrations and thyroid disease prevalence in representative samples of the U.S. general population.

          Methods

          Analyses of PFOA/PFOS versus disease status in the National Health and Nutrition Examination Survey (NHANES) for 1999–2000, 2003–2004, and 2005–2006 included 3,974 adults with measured concentrations for perfluorinated chemicals. Regression models were adjusted for age, sex, race/ethnicity, education, smoking status, body mass index, and alcohol intake.

          Results

          The NHANES-weighted prevalence of reporting any thyroid disease was 16.18% ( n = 292) in women and 3.06% ( n = 69) in men; prevalence of current thyroid disease with related medication was 9.89% ( n = 163) in women and 1.88% ( n = 46) in men. In fully adjusted logistic models, women with PFOA ≥ 5.7 ng/mL [fourth (highest) population quartile] were more likely to report current treated thyroid disease [odds ratio (OR) = 2.24; 95% confidence interval (CI), 1.38–3.65; p = 0.002] compared with PFOA ≤ 4.0 ng/mL (quartiles 1 and 2); we found a near significant similar trend in men (OR = 2.12; 95% CI, 0.93–4.82; p = 0.073). For PFOS, in men we found a similar association for those with PFOS ≥ 36.8 ng/mL (quartile 4) versus ≤ 25.5 ng/mL (quartiles 1 and 2: OR for treated disease = 2.68; 95% CI, 1.03–6.98; p = 0.043); in women this association was not significant.

          Conclusions

          Higher concentrations of serum PFOA and PFOS are associated with current thyroid disease in the U.S. general adult population. More work is needed to establish the mechanisms involved and to exclude confounding and pharmacokinetic explanations.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Half-Life of Serum Elimination of Perfluorooctanesulfonate,Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers

          Background The presence of perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHS), and perfluorooctanoate (PFOA) has been reported in humans and wildlife. Pharmacokinetic differences have been observed in laboratory animals. Objective The purpose of this observational study was to estimate the elimination half-life of PFOS, PFHS, and PFOA from human serum. Methods Twenty-six (24 male, 2 female) retired fluorochemical production workers, with no additional occupational exposure, had periodic blood samples collected over 5 years, with serum stored in plastic vials at −80°C. At the end of the study, we used HPLC-mass spectrometry to analyze the samples, with quantification based on the ion ratios for PFOS and PFHS and the internal standard 18O2-PFOS. For PFOA, quantitation was based on the internal standard 13C2-PFOA. Results The arithmetic mean initial serum concentrations were as follows: PFOS, 799 ng/mL (range, 145–3,490); PFHS, 290 ng/mL (range, 16–1,295); and PFOA, 691 ng/mL (range, 72–5,100). For each of the 26 subjects, the elimination appeared linear on a semi-log plot of concentration versus time; therefore, we used a first-order model for estimation. The arithmetic and geometric mean half-lives of serum elimination, respectively, were 5.4 years [95% confidence interval (CI), 3.9–6.9] and 4.8 years (95% CI, 4.0–5.8) for PFOS; 8.5 years (95% CI, 6.4–10.6) and 7.3 years (95% CI, 5.8–9.2) for PFHS; and 3.8 years (95% CI, 3.1–4.4) and 3.5 years (95% CI, 3.0–4.1) for PFOA. Conclusions Based on these data, humans appear to have a long half-life of serum elimination of PFOS, PFHS, and PFOA. Differences in species-specific pharmacokinetics may be due, in part, to a saturable renal resorption process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000

            Background Polyfluoroalkyl chemicals (PFCs) have been used since the 1950s in numerous commercial applications. Exposure of the general U.S. population to PFCs is widespread. Since 2002, the manufacturing practices for PFCs in the United States have changed considerably. Objectives We aimed to assess exposure to perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), and eight other PFCs in a representative 2003–2004 sample of the general U.S. population ≥ 12 years of age and to determine whether serum concentrations have changed since the 1999–2000 National Health and Nutrition Examination Survey (NHANES). Methods By using automated solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography–tandem mass spectrometry, we analyzed 2,094 serum samples collected from NHANES 2003–2004 participants. Results We detected PFOS, PFOA, PFHxS, and PFNA in > 98% of the samples. Concentrations differed by race/ethnicity and sex. Geometric mean concentrations were significantly lower (approximately 32% for PFOS, 25% for PFOA, 10% for PFHxS) and higher (100%, PFNA) than the concentrations reported in NHANES 1999–2000 (p < 0.001). Conclusions In the general U.S. population in 2003–2004, PFOS, PFOA, PFHxS, and PFNA serum concentrations were measurable in each demographic population group studied. Geometric mean concentrations of PFOS, PFOA, and PFHxS in 2003–2004 were lower than in 1999–2000. The apparent reductions in concentrations of PFOS, PFOA, and PFHxS most likely are related to discontinuation in 2002 of industrial production by electrochemical fluorination of PFOS and related perfluorooctanesulfonyl fluoride compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Perfluoroalkyl acids: a review of monitoring and toxicological findings.

              In recent years, human and wildlife monitoring studies have identified perfluoroalkyl acids (PFAA) worldwide. This has led to efforts to better understand the hazards that may be inherent in these compounds, as well as the global distribution of the PFAAs. Much attention has focused on understanding the toxicology of the two most widely known PFAAs, perfluorooctanoic acid, and perfluorooctane sulfate. More recently, research was extended to other PFAAs. There has been substantial progress in understanding additional aspects of the toxicology of these compounds, particularly related to the developmental toxicity, immunotoxicity, hepatotoxicity, and the potential modes of action. This review provides an overview of the recent advances in the toxicology and mode of action for PFAAs, and of the monitoring data now available for the environment, wildlife, and humans. Several avenues of research are proposed that would further our understanding of this class of compounds.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                May 2010
                20 January 2010
                : 118
                : 5
                : 686-692
                Affiliations
                [1 ] Epidemiology and Public Health Group and
                [2 ] Environment and Human Health Group, Peninsula Medical School, Exeter, United Kingdom
                [3 ] School of Mathematics and Statistics, University of Plymouth, Plymouth, United Kingdom
                [4 ] School of Biosciences, University of Exeter, Exeter, United Kingdom
                Author notes
                Address correspondence to T. Galloway, Department of Ecotoxicology, School of Biosciences, Prince of Wales Rd., Exeter EX4 4PS, UK. Telephone: 44-0-1392-263436. Fax: 44-0-1392-263700. E-mail: t.s.galloway@ 123456exeter.ac.uk

                The authors declare they have no actual or potential competing financial interests.

                Article
                ehp-118-686
                10.1289/ehp.0901584
                2866686
                20089479
                7ba78a57-ddbf-4604-9fa3-a5fa8029f34b
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 17 October 2009
                : 7 January 2010
                Categories
                Research

                Public health
                thyroid disease,pfoa,c8,human population,pfos
                Public health
                thyroid disease, pfoa, c8, human population, pfos

                Comments

                Comment on this article