17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cost-effectiveness of a combined intervention of long lasting insecticidal nets and indoor residual spraying compared with each intervention alone for malaria prevention in Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The effectiveness of long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), for malaria prevention, have been established in several studies. However, the available evidence about the additional resources required for a combined implementation (LLIN + IRS) with respect to the added protection afforded is limited. Therefore, the aim of this study was to compare the cost-effectiveness of combined implementation of LLINs and IRS, compared with LLINs alone, IRS alone, and routine practice in Ethiopia.

          Methods

          The study was performed alongside a cluster randomized controlled trial of malaria prevention conducted in Adami Tullu district, in Ethiopia, from 2014 to 2016. In addition, literature-based cost-effectiveness analysis—using effectiveness information from a systematic review of published articles was conducted. Costing of the interventions were done from the providers’ perspective. The health-effect was measured using disability adjusted life years (DALYs) averted, and combined with cost information using a Markov life-cycle model. In the base-case analysis, health-effects were based on the current trial, and in addition, a scenario analysis was performed based on a literature survey.

          Results

          The current trial-based analysis showed that routine practice is not less effective and therefore dominates both the combined intervention and singleton intervention due to lower costs. The literature-based analysis had shown that combined intervention had an incremental cost-effectiveness ratio of USD 1403 per DALY averted, and USD 207 per DALY averted was estimated for LLIN alone. In order for the ICER for the combined intervention to be within a range of 1 GDP per capita per DALY averted, the annual malaria incidence in the area should be at least 13%, and the protective-effectiveness of combined implementation should be at least 53%.

          Conclusions

          Based on the current trial-based analysis, LLINs and IRS are not cost-effective compared to routine practice. However, based on the literature-based analysis, LLIN alone is likely to be cost-effective compared to 3 times GDP per capita per DALY averted. The annual malaria probability and protective-effectiveness of combined intervention are key determinants of the cost-effectiveness of the interventions.

          Trial registration PACTR201411000882128 (Registered 8 September 2014). http://www.pactr.org/ATMWeb/appmanager/atm/atmregistry?dar=true&tNo=PACTR201411000882128

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Characterizing, controlling and eliminating residual malaria transmission

          Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) interventions can reduce malaria transmission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock shelters or other man-made structures. However, many malaria vector species can maintain robust transmission, despite high coverage of LLINs/IRS containing insecticides to which they are physiologically fully susceptible, because they exhibit one or more behaviours that define the biological limits of achievable impact with these interventions: (1) Natural or insecticide-induced avoidance of contact with treated surfaces within houses and early exit from them, thus minimizing exposure hazard of vectors which feed indoors upon humans; (2) Feeding upon humans when they are active and unprotected outdoors, thereby attenuating personal protection and any consequent community-wide suppression of transmission; (3) Feeding upon animals, thus minimizing contact with insecticides targeted at humans or houses; (4) Resting outdoors, away from insecticide-treated surfaces of nets, walls and roofs. Residual malaria transmission is, therefore, defined as all forms of transmission that can persist after achieving full universal coverage with effective LLINs and/or IRS containing active ingredients to which local vector populations are fully susceptible. Residual transmission is sufficiently intense across most of the tropics to render malaria elimination infeasible without new or improved vector control methods. Many novel or improved vector control strategies to address residual transmission are emerging that either: (1) Enhance control of adult vectors that enter houses to feed and/or rest by killing, repelling or excluding them; (2) Kill or repel adult mosquitoes when they attack people outdoors; (3) Kill adult mosquitoes when they attack livestock; (4) Kill adult mosquitoes when they feed upon sugar or; (5) Kill immature mosquitoes in aquatic habitats. To date, none of these options has sufficient supporting evidence to justify full-scale programmatic implementation. Concerted investment in their rigorous selection, development and evaluation is required over the coming decade to enable control and, ultimately, elimination of residual malaria transmission. In the meantime, national programmes may assess options for addressing residual transmission under programmatic conditions through pilot studies with strong monitoring, evaluation and operational research components, similar to the Onchocerciasis Control Programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generalized cost-effectiveness analysis for national-level priority-setting in the health sector

            Cost-effectiveness analysis (CEA) is potentially an important aid to public health decision-making but, with some notable exceptions, its use and impact at the level of individual countries is limited. A number of potential reasons may account for this, among them technical shortcomings associated with the generation of current economic evidence, political expediency, social preferences and systemic barriers to implementation. As a form of sectoral CEA, Generalized CEA sets out to overcome a number of these barriers to the appropriate use of cost-effectiveness information at the regional and country level. Its application via WHO-CHOICE provides a new economic evidence base, as well as underlying methodological developments, concerning the cost-effectiveness of a range of health interventions for leading causes of, and risk factors for, disease. The estimated sub-regional costs and effects of different interventions provided by WHO-CHOICE can readily be tailored to the specific context of individual countries, for example by adjustment to the quantity and unit prices of intervention inputs (costs) or the coverage, efficacy and adherence rates of interventions (effectiveness). The potential usefulness of this information for health policy and planning is in assessing if current intervention strategies represent an efficient use of scarce resources, and which of the potential additional interventions that are not yet implemented, or not implemented fully, should be given priority on the grounds of cost-effectiveness. Health policy-makers and programme managers can use results from WHO-CHOICE as a valuable input into the planning and prioritization of services at national level, as well as a starting point for additional analyses of the trade-off between the efficiency of interventions in producing health and their impact on other key outcomes such as reducing inequalities and improving the health of the poor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Costs and cost-effectiveness of malaria control interventions - a systematic review

              Background The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness. Methods A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives. Results Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was $2.20 (range $0.88-$9.54) for ITNs, $6.70 (range $2.22-$12.85) for IRS, $0.60 (range $0.48-$1.08) for IPT in infants, $4.03 (range $1.25-$11.80) for IPT in children, and $2.06 (range $0.47-$3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was $4.32 (range $0.34-$9.34). The median financial cost of treating an episode of uncomplicated malaria was $5.84 (range $2.36-$23.65) and the median financial cost of treating an episode of severe malaria was $30.26 (range $15.64-$137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was $27 (range $8.15-$110) for ITNs, $143 (range $135-$150) for IRS, and $24 (range $1.08-$44.24) for IPT. Conclusions A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes.
                Bookmark

                Author and article information

                Contributors
                alemayehu4all@gmail.com
                bernt.lindtjorn@cih.uib.no
                deressaw@gmail.com
                tayegari@ymail.com
                eskindir_loha@yahoo.com
                Bjarne.Robberstad@uib.no
                Journal
                Cost Eff Resour Alloc
                Cost Eff Resour Alloc
                Cost Effectiveness and Resource Allocation : C/E
                BioMed Central (London )
                1478-7547
                22 November 2018
                22 November 2018
                2018
                : 16
                : 61
                Affiliations
                [1 ]ISNI 0000 0004 1936 7443, GRID grid.7914.b, Department of Global Public Health and Primary Care, Centre for International Health, , University of Bergen, ; Bergen, Norway
                [2 ]ISNI 0000 0001 1250 5688, GRID grid.7123.7, Department of Reproductive Health and Health Service Management, School of Public Health, , Addis Ababa University, ; Addis Ababa, Ethiopia
                [3 ]ISNI 0000 0001 1250 5688, GRID grid.7123.7, Department of Preventive Medicine, School of Public Health, , Addis Ababa University, ; Addis Ababa, Ethiopia
                [4 ]ISNI 0000 0000 8953 2273, GRID grid.192268.6, School of Public and Environmental Health, , Hawassa University, ; Hawassa, Ethiopia
                [5 ]ISNI 0000 0004 1936 7443, GRID grid.7914.b, Center for Intervention Science in Maternal and Child Health (CISMAC), , University of Bergen, ; Bergen, Norway
                Author information
                http://orcid.org/0000-0003-4872-8036
                Article
                164
                10.1186/s12962-018-0164-1
                6251210
                30498400
                7b5f69ac-2b4f-41dd-b7c2-2485c0532f1b
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 May 2018
                : 16 November 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100005416, Norges Forskningsråd;
                Award ID: 220554
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Public health
                malaria,malaria prevention,economic evaluation,llin,irs,cost-effectiveness,ethiopia
                Public health
                malaria, malaria prevention, economic evaluation, llin, irs, cost-effectiveness, ethiopia

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content152

                Cited by11

                Most referenced authors407