0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pd(x)Ru(1-x) solid solution alloy nanoparticles were successfully synthesized over the whole composition range through a chemical reduction method, although Ru and Pd are immiscible at the atomic level in the bulk state. From the XRD measurement, it was found that the dominant structure of Pd(x)Ru(1-x) changes from fcc to hcp with increasing Ru content. The structures of Pd(x)Ru(1-x) nanoparticles in the Pd composition range of 30-70% consisted of both solid solution fcc and hcp structures, and both phases coexist in a single particle. In addition, the reaction of hydrogen with the Pd(x)Ru(1-x) nanoparticles changed from exothermic to endothermic as the Ru content increased. Furthermore, the prepared Pd(x)Ru(1-x) nanoparticles demonstrated enhanced CO-oxidizing catalytic activity; Pd0.5Ru0.5 nanoparticles exhibit the highest catalytic activity. This activity is much higher than that of the practically used CO-oxidizing catalyst Ru and that of the neighboring Rh, between Ru and Pd.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          1520-5126
          0002-7863
          Feb 5 2014
          : 136
          : 5
          Affiliations
          [1 ] Division of Chemistry, Graduate School of Science, Kyoto University , Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
          Article
          10.1021/ja409464g
          24455969
          7b5f595b-8b3f-47b1-b356-0d7ef881417f
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content110

          Cited by54