0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Constructed languages are processed by the same brain mechanisms as natural languages

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          What constitutes a language? Natural languages share features with other domains: from math, to music, to gesture. However, the brain mechanisms that process linguistic input are highly specialized, showing little response to diverse nonlinguistic tasks. Here, we examine constructed languages (conlangs) to ask whether they draw on the same neural mechanisms as natural languages or whether they instead pattern with domains like math and programming languages. Using individual-subject fMRI analyses, we show that understanding conlangs recruits the same brain areas as natural language comprehension. This result holds for Esperanto (n = 19 speakers) and four fictional conlangs [Klingon (n = 10), Na’vi (n = 9), High Valyrian (n = 3), and Dothraki (n = 3)]. These findings suggest that conlangs and natural languages share critical features that allow them to draw on the same representations and computations, implemented in the left-lateralized network of brain areas. The features of conlangs that differentiate them from natural languages—including recent creation by a single individual, often for an esoteric purpose, the small number of speakers, and the fact that these languages are typically learned in adulthood—appear to not be consequential for the reliance on the same cognitive and neural mechanisms. We argue that the critical shared feature of conlangs and natural languages is that they are symbolic systems capable of expressing an open-ended range of meanings about our outer and inner worlds.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          Unified segmentation.

          A probabilistic framework is presented that enables image registration, tissue classification, and bias correction to be combined within the same generative model. A derivation of a log-likelihood objective function for the unified model is provided. The model is based on a mixture of Gaussians and is extended to incorporate a smooth intensity variation and nonlinear registration with tissue probability maps. A strategy for optimising the model parameters is described, along with the requisite partial derivatives of the objective function.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Spatial registration and normalization of images

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour.

              A common or multiple-demand (MD) pattern of frontal and parietal activity is associated with diverse cognitive demands, and with standard tests of fluid intelligence. In intelligent behaviour, goals are achieved by assembling a series of sub-tasks, creating structured mental programs. Single cell and functional magnetic resonance imaging (fMRI) data indicate a key role for MD cortex in defining and controlling the parts of such programs, with focus on the specific content of a current cognitive operation, rapid reorganization as mental focus is changed, and robust separation of successive task steps. Resembling the structured problem-solving of symbolic artificial intelligence, the mental programs of MD cortex appear central to intelligent thought and action.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 25 2025
                March 17 2025
                March 25 2025
                : 122
                : 12
                Article
                10.1073/pnas.2313473122
                7a9cda07-3327-4fe8-b7f2-2f669551f781
                © 2025

                https://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article