5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cost-effectiveness of the anti-fibrotics for the treatment of idiopathic pulmonary fibrosis in the United States

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The anti-fibrotic medications nintedanib and pirfenidone were approved in the United States for use in patients with idiopathic pulmonary fibrosis several years ago. While there is a growing body of evidence surrounding their clinical effectiveness, these medications are quite expensive and no prior cost-effectiveness analysis has been performed in the United States.

          Methods

          A previously published Markov model performed in the United Kingdom was replicated using United States data to project the lifetime costs and health benefits of treating idiopathic pulmonary fibrosis with: (1) symptom management; (2) pirfenidone; or (3) nintedanib. For the cost-effectiveness analysis, strategies were ranked by increasing costs and then checked for dominating treatment strategies. Then an incremental cost-effectiveness ratio was calculated for the dominant therapy.

          Results

          The anti-fibrotic medications were found to cost more than $110,000 per year compared to $12,291 annually for symptom management. While pirfenidone was slightly more expensive than nintedanib and provided the same amount of benefit, neither medication was found to be cost-effective in this U.S.-based analysis, with an average cost of $1.6 million to gain one additional quality-adjusted life year over symptom management.

          Conclusions

          Though the anti-fibrotics remain the only effective treatment option for patients with idiopathic pulmonary fibrosis and the data surrounding their clinical effectiveness continues to grow, they are not considered cost-effective treatment strategies in the United States due to their high price.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis.

          Nintedanib (formerly known as BIBF 1120) is an intracellular inhibitor that targets multiple tyrosine kinases. A phase 2 trial suggested that treatment with 150 mg of nintedanib twice daily reduced lung-function decline and acute exacerbations in patients with idiopathic pulmonary fibrosis. We conducted two replicate 52-week, randomized, double-blind, phase 3 trials (INPULSIS-1 and INPULSIS-2) to evaluate the efficacy and safety of 150 mg of nintedanib twice daily as compared with placebo in patients with idiopathic pulmonary fibrosis. The primary end point was the annual rate of decline in forced vital capacity (FVC). Key secondary end points were the time to the first acute exacerbation and the change from baseline in the total score on the St. George's Respiratory Questionnaire, both assessed over a 52-week period. A total of 1066 patients were randomly assigned in a 3:2 ratio to receive nintedanib or placebo. The adjusted annual rate of change in FVC was -114.7 ml with nintedanib versus -239.9 ml with placebo (difference, 125.3 ml; 95% confidence interval [CI], 77.7 to 172.8; P<0.001) in INPULSIS-1 and -113.6 ml with nintedanib versus -207.3 ml with placebo (difference, 93.7 ml; 95% CI, 44.8 to 142.7; P<0.001) in INPULSIS-2. In INPULSIS-1, there was no significant difference between the nintedanib and placebo groups in the time to the first acute exacerbation (hazard ratio with nintedanib, 1.15; 95% CI, 0.54 to 2.42; P=0.67); in INPULSIS-2, there was a significant benefit with nintedanib versus placebo (hazard ratio, 0.38; 95% CI, 0.19 to 0.77; P=0.005). The most frequent adverse event in the nintedanib groups was diarrhea, with rates of 61.5% and 18.6% in the nintedanib and placebo groups, respectively, in INPULSIS-1 and 63.2% and 18.3% in the two groups, respectively, in INPULSIS-2. In patients with idiopathic pulmonary fibrosis, nintedanib reduced the decline in FVC, which is consistent with a slowing of disease progression; nintedanib was frequently associated with diarrhea, which led to discontinuation of the study medication in less than 5% of patients. (Funded by Boehringer Ingelheim; INPULSIS-1 and INPULSIS-2 ClinicalTrials.gov numbers, NCT01335464 and NCT01335477.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recommendations for Conduct, Methodological Practices, and Reporting of Cost-effectiveness Analyses: Second Panel on Cost-Effectiveness in Health and Medicine.

            Since publication of the report by the Panel on Cost-Effectiveness in Health and Medicine in 1996, researchers have advanced the methods of cost-effectiveness analysis, and policy makers have experimented with its application. The need to deliver health care efficiently and the importance of using analytic techniques to understand the clinical and economic consequences of strategies to improve health have increased in recent years.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis.

              In two of three phase 3 trials, pirfenidone, an oral antifibrotic therapy, reduced disease progression, as measured by the decline in forced vital capacity (FVC) or vital capacity, in patients with idiopathic pulmonary fibrosis; in the third trial, this end point was not achieved. We sought to confirm the beneficial effect of pirfenidone on disease progression in such patients. In this phase 3 study, we randomly assigned 555 patients with idiopathic pulmonary fibrosis to receive either oral pirfenidone (2403 mg per day) or placebo for 52 weeks. The primary end point was the change in FVC or death at week 52. Secondary end points were the 6-minute walk distance, progression-free survival, dyspnea, and death from any cause or from idiopathic pulmonary fibrosis. In the pirfenidone group, as compared with the placebo group, there was a relative reduction of 47.9% in the proportion of patients who had an absolute decline of 10 percentage points or more in the percentage of the predicted FVC or who died; there was also a relative increase of 132.5% in the proportion of patients with no decline in FVC (P<0.001). Pirfenidone reduced the decline in the 6-minute walk distance (P=0.04) and improved progression-free survival (P<0.001). There was no significant between-group difference in dyspnea scores (P=0.16) or in rates of death from any cause (P=0.10) or from idiopathic pulmonary fibrosis (P=0.23). However, in a prespecified pooled analysis incorporating results from two previous phase 3 trials, the between-group difference favoring pirfenidone was significant for death from any cause (P=0.01) and from idiopathic pulmonary fibrosis (P=0.006). Gastrointestinal and skin-related adverse events were more common in the pirfenidone group than in the placebo group but rarely led to treatment discontinuation. Pirfenidone, as compared with placebo, reduced disease progression, as reflected by lung function, exercise tolerance, and progression-free survival, in patients with idiopathic pulmonary fibrosis. Treatment was associated with an acceptable side-effect profile and fewer deaths. (Funded by InterMune; ASCEND ClinicalTrials.gov number, NCT01366209.).
                Bookmark

                Author and article information

                Contributors
                dempsey.timothy@mayo.edu
                Journal
                BMC Pulm Med
                BMC Pulm Med
                BMC Pulmonary Medicine
                BioMed Central (London )
                1471-2466
                10 January 2022
                10 January 2022
                2022
                : 22
                : 18
                Affiliations
                [1 ]GRID grid.453002.0, ISNI 0000 0001 2331 3497, David Grant Medical Center, , US Air Force, ; 101 Bodin Circle, Travis AFB, CA 94535 USA
                [2 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, , Mayo Clinic, ; 200 1st St SW, Rochester, MN 55905 USA
                [3 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Department of Pulmonary and Critical Care Medicine, , Mayo Clinic, ; 200 1st St SW, Rochester, MN 55905 USA
                [4 ]GRID grid.66875.3a, ISNI 0000 0004 0459 167X, Division of Health Care Delivery Research, , Mayo Clinic, ; 200 1st St SW, Rochester, MN 55905 USA
                Article
                1811
                10.1186/s12890-021-01811-0
                8744245
                35000589
                7a27e785-1529-4a38-862f-70ed94186198
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 September 2021
                : 13 December 2021
                Funding
                Funded by: Three Lakes Partners
                Funded by: Caerus Foundation
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Respiratory medicine
                idiopathic pulmonary fibrosis,cost-effectiveness analysis,pirfenidone,nintedanib

                Comments

                Comment on this article