0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advanced methods to mechanically isolate stromal vascular fraction: A concise review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adipose tissue is a highly attractive reservoir of stem cells due to its accessibility and abundance, and the SVF within it holds great promise for stem cell-based therapies. The use of mechanical methods for SVF isolation from adipose tissue is preferred over enzymatic methods, as it can be readily applied in clinical settings without additional processing steps. However, there is a lack of consensus on the optimal approach for mechanically isolating SVF. This comprehensive review aims to present and compare the latest mechanical isolation methods for SVF from adipose tissue, including centrifugation, filtration/washing, emulsification, vibration, and mincing/adiponizing. Each of these methods possesses unique advantages and limitations, and yet, no conclusive evidence has emerged demonstrating the superiority of one approach over the others, primarily due to the dearth of well-controlled prospective studies in this field.

          Highlights

          • mSVF excels vs. eSVF in regenerative medicine: enhanced cell retention, vascularization.

          • Factors for mSVF selection: prep time, ASC yield, viability, complexity, clinical needs.

          • mSVF aids volumization, graft retention; optimal prep method needs more research.

          • Mechanical isolation (e.g., emulsification) risks ASC, adipocyte damage, but yields high ASC concentration, fine injections.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Multilineage cells from human adipose tissue: implications for cell-based therapies.

          Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).

            Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanofat grafting: basic research and clinical applications.

              The indications for fat grafting are increasing steadily. In microfat grafting, thin injection cannulas are used. The authors describe their experience of fat injection with even thinner injection needles up to 27 gauge. The fat used for this purpose is processed into "nanofat." Clinical applications are described. Preliminary results of a study, set up to determine the cellular contents of nanofat, are presented.
                Bookmark

                Author and article information

                Contributors
                Journal
                Regen Ther
                Regen Ther
                Regenerative Therapy
                Japanese Society for Regenerative Medicine
                2352-3204
                25 March 2024
                December 2024
                25 March 2024
                : 27
                : 120-125
                Affiliations
                [1]Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
                Author notes
                [* ]Corresponding author. doctoryaoyao@ 123456hotmail.com
                Article
                S2352-3204(24)00052-X
                10.1016/j.reth.2024.03.020
                10987671
                38571891
                79f1cade-7bdf-47cd-b3d0-01b59a841026
                © 2024 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 6 November 2023
                : 29 February 2024
                : 17 March 2024
                Categories
                Review

                lipoaspirate processing,stromal vascular fraction,mechanical/physical,ascs,centrifugation,emulsification

                Comments

                Comment on this article