34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial properties of chitosan and mode of action: a state of the art review.

          Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.

            The rapid advancement of nanotechnology has created a vast array of engineered nanomaterials (ENMs) which have unique physical (size, shape, crystallinity, surface charge) and chemical (surface coating, elemental composition and solubility) attributes. These physicochemical properties of ENMs can produce chemical conditions to induce a pro-oxidant environment in the cells, causing an imbalanced cellular energy system dependent on redox potential and thereby leading to adverse biological consequences, ranging from the initiation of inflammatory pathways through to cell death. The present study was designed to evaluate size-dependent cellular interactions of known biologically active silver nanoparticles (NPs, Ag-15 nm, Ag-30 nm, and Ag-55 nm). Alveolar macrophages provide the first defense and were studied for their potential role in initiating oxidative stress. Cell exposure produced morphologically abnormal sizes and adherence characteristics with significant NP uptake at high doses after 24 h. Toxicity evaluations using mitochondrial and cell membrane viability along with reactive oxygen species (ROS) were performed. After 24 h of exposure, viability metrics significantly decreased with increasing dose (10-75 microg/mL) of Ag-15 nm and Ag-30 nm NPs. A more than 10-fold increase of ROS levels in cells exposed to 50 microg/mL Ag-15 nm suggests that the cytotoxicity of Ag-15 nm is likely to be mediated through oxidative stress. In addition, activation of the release of traditional inflammatory mediators were examined by measuring levels of cytokines/chemokines, including tumor necrosis factor (TNF-alpha), macrophage inhibitory protein (MIP-2), and interleukin-6 (IL-6), released into the culture media. After 24 h of exposure to Ag-15 nm nanoparticles, a significant inflammatory response was observed by the release of TNF-alpha, MIP-2, and IL-1beta. However, there was no detectable level of IL-6 upon exposure to silver nanoparticles. In summary, a size-dependent toxicity was produced by silver nanoparticles, and one predominant mechanism of toxicity was found to be largely mediated through oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vitro toxicity of nanoparticles in BRL 3A rat liver cells.

              This study was undertaken to address the current deficient knowledge of cellular response to nanosized particle exposure. The study evaluated the acute toxic effects of metal/metal oxide nanoparticles proposed for future use in industrial production methods using the in vitro rat liver derived cell line (BRL 3A). Different sizes of nanoparticles such as silver (Ag; 15, 100 nm), molybdenum (MoO(3); 30, 150 nm), aluminum (Al; 30, 103 nm), iron oxide (Fe(3)O(4); 30, 47 nm), and titanium dioxide (TiO(2); 40 nm) were evaluated for their potential toxicity. We also assessed the toxicity of relatively larger particles of cadmium oxide (CdO; 1 microm), manganese oxide (MnO(2); 1-2 microm), and tungsten (W; 27 microm), to compare the cellular toxic responses with respect to the different sizes of nanoparticles with different core chemical compositions. For toxicity evaluations, cellular morphology, mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH) levels, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were assessed under control and exposed conditions (24h of exposure). Results showed that mitochondrial function decreased significantly in cells exposed to Ag nanoparticles at 5-50 microg/ml. However, Fe(3)O(4), Al, MoO(3) and TiO(2) had no measurable effect at lower doses (10-50 microg/ml), while there was a significant effect at higher levels (100-250 microg/ml). LDH leakage significantly increased in cells exposed to Ag nanoparticles (10-50 microg/ml), while the other nanoparticles tested displayed LDH leakage only at higher doses (100-250 microg/ml). In summary the Ag was highly toxic whereas, MoO(3) moderately toxic and Fe(3)O(4), Al, MnO(2) and W displayed less or no toxicity at the doses tested. The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape. Due to toxicity of silver, further study conducted with reference to its oxidative stress. The results exhibited significant depletion of GSH level, reduced mitochondrial membrane potential and increase in ROS levels, which suggested that cytotoxicity of Ag (15, 100 nm) in liver cells is likely to be mediated through oxidative stress.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                03 March 2016
                March 2016
                : 17
                : 3
                : 334
                Affiliations
                [1 ]School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China; noprint2000@ 123456hotmail.com (H.L.); tracyguo1218@ 123456hotmail.com (J.G.)
                [2 ]Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute, Amsterdam 1081LA, The Netherlands; liuyizzd@ 123456163.com (Y.L.); g.wu@ 123456acta.nl (G.W.)
                [3 ]The First Affiliated Hospital, Medical School, Zhejiang University, Hangzhou 310003, China
                [4 ]The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
                Author notes
                [* ]Correspondence: whl1616@ 123456126.com (H.W.); wangjingxiao@ 123456zju.edu.cn (J.W.); Tel.: +86-571-8723-5018 (H.W.); +86-577-5557-9173 (J.W.)
                [†]

                These authors contributed evenly to this work.

                Article
                ijms-17-00334
                10.3390/ijms17030334
                4813196
                26950123
                79b9214d-9d71-470b-b0aa-334d97dba266
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 February 2016
                : 29 February 2016
                Categories
                Review

                Molecular biology
                co-delivery,antibacterial,osteoinductive,antibiotics,bone morphogenetic protein2 (bmp2),infected bone defect,bone regeneration

                Comments

                Comment on this article