30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacteriocins from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Antibiotic resistance is a growing threat; its indiscriminate use has led to management restrictions in humans and animals. Bacteriocins are powerful antimicrobial peptides that have great potential in the prevention and treatment of diseases in animals. Their antimicrobial activity is rapid, and they show a lower propensity to develop resistance than conventional antibiotics. Currently, their main application is in food preservation systems. However, several studies show their bioactive role as antimicrobials, probiotics, and immunomodulators in animals. Therefore, bacteriocins are an excellent alternative to be applied in several areas of veterinary medicine.

          Abstract

          In the search for an alternative treatment to reduce antimicrobial resistance, bacteriocins shine a light on reducing this problem in public and animal health. Bacteriocins are peptides synthesized by bacteria that can inhibit the growth of other bacteria and fungi, parasites, and viruses. Lactic acid bacteria (LAB) are a group of bacteria that produce bacteriocins; their mechanism of action can replace antibiotics and prevent bacterial resistance. In veterinary medicine, LAB and bacteriocins have been used as antimicrobials and probiotics. However, another critical role of bacteriocins is their immunomodulatory effect. This review shows the advances in applying bacteriocins in animal production and veterinary medicine, highlighting their biological roles.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.

          Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocins: developing innate immunity for food.

            Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocins - a viable alternative to antibiotics?

              Solutions are urgently required for the growing number of infections caused by antibiotic-resistant bacteria. Bacteriocins, which are antimicrobial peptides produced by certain bacteria, might warrant serious consideration as alternatives to traditional antibiotics. These molecules exhibit significant potency against other bacteria (including antibiotic-resistant strains), are stable and can have narrow or broad activity spectra. Bacteriocins can even be produced in situ in the gut by probiotic bacteria to combat intestinal infections. Although the application of specific bacteriocins might be curtailed by the development of resistance, an understanding of the mechanisms by which such resistance could emerge will enable researchers to develop strategies to minimize this potential problem.
                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                01 April 2021
                April 2021
                : 11
                : 4
                : 979
                Affiliations
                [1 ]Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad km 1 Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Mexico; juan_hernandez8281@ 123456uaeh.edu.mx (J.C.H.-G.); ma335862@ 123456uaeh.edu.mx (A.M.-T.); la319548@ 123456uaeh.edu.mx (G.L.-H.)
                [2 ]Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, México City 11340, Mexico; blgarciap@ 123456ipn.mx
                Author notes
                [* ]Correspondence: nayeli_castrejon@ 123456uaeh.edu.mx ; Tel.: +52-551-651-1952
                Author information
                https://orcid.org/0000-0002-1982-4558
                https://orcid.org/0000-0001-6610-5559
                https://orcid.org/0000-0002-9944-9582
                Article
                animals-11-00979
                10.3390/ani11040979
                8067144
                33915717
                79a457d3-b871-4855-9e57-03ebcb04e7b2
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 20 February 2021
                : 24 March 2021
                Categories
                Review

                bacteriocins,antimicrobials,lactic acid bacteria,probiotics,immunomodulation,veterinary medicine

                Comments

                Comment on this article