1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcarotid implantation of a leadless pacemaker in a patient with Fontan circulation

      case-report
      , MBChB(Hons), MRCP , , , MD, FCAI , , MD, MRCP , , MSC, BSc(Hons), FRCS , , , MBBS, BSc(Hons), FRCA , , MBBS, MRCP ,
      HeartRhythm Case Reports
      Elsevier
      Leadless pacemaker, Fontan, Single ventricle, Transcarotid, Adult congenital heart disease

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults

          Various techniques have been employed for the early detection of perioperative cerebral ischaemia and hypoxia. Cerebral near‐infrared spectroscopy (NIRS) is increasingly used in this clinical scenario to monitor brain oxygenation. However, it is unknown whether perioperative cerebral NIRS monitoring and the subsequent treatment strategies are of benefit to patients. To assess the effects of perioperative cerebral NIRS monitoring and corresponding treatment strategies in adults and children, compared with blinded or no cerebral oxygenation monitoring, or cerebral oxygenation monitoring based on non‐NIRS technologies, on the detection of cerebral oxygen desaturation events (CDEs), neurological outcomes, non‐neurological outcomes and socioeconomic impact (including cost of hospitalization and length of hospital stay). We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 12), Embase (1974 to 20 December 2016) and MEDLINE (PubMed) (1975 to 20 December 2016). We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing studies on 20 December 2016. We updated this search in November 2017, but these results have not yet been incorporated in the review. We imposed no language restriction. We included all relevant randomized controlled trials (RCTs) dealing with the use of cerebral NIRS in the perioperative setting (during the operation and within 72 hours after the operation), including the operating room, the postanaesthesia care unit and the intensive care unit. Two authors independently selected studies, assessed risk of bias and extracted data. For binary outcomes, we calculated the risk ratio (RR) and its 95% confidence interval (CI). For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. As we expected clinical and methodological heterogeneity between studies, we employed a random‐effects model for analyses and we examined the data for heterogeneity (I 2 statistic). We created a 'Summary of findings' table using GRADEpro. We included 15 studies in the review, comprising a total of 1822 adult participants. There are 12 studies awaiting classification, and eight ongoing studies. None of the 15 included studies considered the paediatric population. Four studies were conducted in the abdominal and orthopaedic surgery setting (lumbar spine, or knee and hip replacement), one study in the carotid endarterectomy setting, and the remaining 10 studies in the aortic or cardiac surgery setting. The main sources of bias in the included studies related to potential conflict of interest from industry sponsorship, unclear blinding status or missing participant data. Two studies with 312 participants considered postoperative neurological injury, however no pooled effect estimate could be calculated due to discordant direction of effect between studies (low‐quality evidence). One study (N = 126) in participants undergoing major abdominal surgery reported that 4/66 participants experienced neurological injury with blinded monitoring versus 0/56 in the active monitoring group. A second study (N = 195) in participants having coronary artery bypass surgery reported that 1/96 participants experienced neurological injury in the blinded monitoring group compared with 4/94 participants in the active monitoring group. We are uncertain whether active cerebral NIRS monitoring has an important effect on the risk of postoperative stroke because of the low number of events and wide confidence interval (RR 0.25, 95% CI 0.03 to 2.20; 2 studies, 240 participants; low‐quality evidence). We are uncertain whether active cerebral NIRS monitoring has an important effect on postoperative delirium because of the wide confidence interval (RR 0.63, 95% CI 0.27 to 1.45; 1 study, 190 participants; low‐quality evidence). Two studies with 126 participants showed that active cerebral NIRS monitoring may reduce the incidence of mild postoperative cognitive dysfunction (POCD) as defined by the original studies at one week after surgery (RR 0.53, 95% CI 0.30 to 0.95, I 2 = 49%, low‐quality evidence). Based on six studies with 962 participants, there was moderate‐quality evidence that active cerebral oxygenation monitoring probably does not decrease the occurrence of POCD (decline in cognitive function) at one week after surgery (RR 0.62, 95% CI 0.37 to 1.04, I 2 = 80%). The different type of monitoring equipment in one study could potentially be the cause of the heterogeneity. We are uncertain whether active cerebral NIRS monitoring has an important effect on intraoperative mortality or postoperative mortality because of the low number of events and wide confidence interval (RR 0.63, 95% CI 0.08 to 5.03, I 2 = 0%; 3 studies, 390 participants; low‐quality evidence). There was no evidence to determine whether routine use of NIRS‐based cerebral oxygenation monitoring causes adverse effects. The effects of perioperative active cerebral NIRS monitoring of brain oxygenation in adults for reducing the occurrence of short‐term, mild POCD are uncertain due to the low quality of the evidence. There is uncertainty as to whether active cerebral NIRS monitoring has an important effect on postoperative stroke, delirium or death because of the low number of events and wide confidence intervals. The conclusions of this review may change when the eight ongoing studies are published and the 12 studies awaiting assessment are classified. More RCTs performed in the paediatric population and high‐risk patients undergoing non‐cardiac surgery (e.g. neurosurgery, carotid endarterectomy and other surgery) are needed. The review question We assessed the effects of monitoring the brain with cerebral near‐infrared spectroscopy (NIRS), and treatments based on it, during and after surgery in adults and children. We aimed to determine whether NIRS detects reduced oxygen supply to the brain, which would allow the use of interventions to improve nervous system, mental process (cognition) and other outcomes that can have an impact on patients' hospital length of stay and costs. Background The human brain needs a lot of oxygen (has a high oxygen consumption) and is very sensitive to reduced oxygen supply. Successful treatment for low levels of oxygen in the brain during or after surgery relies on early diagnosis of a lack of oxygen. Cerebral NIRS is increasingly used for the early detection of lack of oxygen to the brain. It uses near‐infrared light (700 to 1000 nanometres) to penetrate through the superficial layers of the head, including the scalp and the skull, to show the cerebral tissue. Study characteristics The evidence is current to December 2016. We updated our search in November 2017, but these results have not yet been incorporated in the review. We included 15 completed randomized controlled trials involving 1822 participants. There are 8 ongoing studies and 12 waiting further assessment. None of the completed studies included infants or children. In four studies participants were undergoing abdominal or orthopaedic surgery, one study included participants undergoing a procedure to restore proper blood flow to the brain, and in the remaining 10 studies participants were undergoing large blood vessel or heart surgery with or without heart bypass. The studies all used cerebral NIRS in the operating room, with only two also using cerebral NIRS in the intensive care unit. The control groups were monitored using methods such as heart rate and mean arterial blood pressure, electroencephalogram, transcranial doppler, bispectral index, oxygen saturation in the jugular vein, evoked potentials or cerebral tissue oxygen partial pressure. Overall, the different studies varied in their approach to the review question. Key results We did not pool (combine) the data for the outcome postoperative neurological injury because of variations between studies. One study with 126 participants having major abdominal surgery reported that 4/66 versus 0/56 participants experienced neurological injury with blinded and active monitoring, respectively. A second study with 195 participants undergoing coronary artery bypass surgery reported that 1/96 versus 4/94 participants suffered neurological injury in the blinded (masked) and active (with active treatments) monitoring groups, respectively. We are unsure whether active NIRS monitoring has an important effect on the risk of postoperative stroke and delirium because there was a low number of events and the result was not precise (2 studies, 240 participants; 1 study, 190 participants, respectively; low‐quality evidence). Based on two studies with 126 participants, we found low‐quality evidence that cerebral NIRS monitoring may reduce the number of participants with mild cognitive impairment at one week after surgery. Based on six studies with 962 participants, we found moderate‐quality evidence that monitoring with cerebral NIRS probably leads to little or no decrease in the number of participants with a decline in cognitive function one week after surgery. We are uncertain whether active cerebral oxygenation monitoring has a crucial effect on intraoperative or postoperative deaths because there was a low number of events and the result was not precise (3 studies, 390 participants; low‐quality evidence). We did not find any detrimental effects of the routine use of NIRS‐based brain oxygenation monitoring. Quality of the evidence Overall, it is uncertain whether active NIRS monitoring has a crucial effect on postoperative stroke, delirium or death because of the imprecision of the results (low‐quality evidence). Therefore, the effects of active cerebral NIRS monitoring on postoperative nervous system injury, delirium, decline in cognitive function and death are uncertain. For some outcomes, such as postoperative stroke or other neurological injury, the evidence was based on few studies with limited numbers of participants. Reporting of outcomes was often incomplete for all study participants, as was reporting of the study design, such as blinding. Some studies had potential conflicts of interest from industry sponsorship.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Complications and Health Care Costs Associated With Transvenous Cardiac Pacemakers in a Nationwide Assessment

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contemporary outcomes after the Fontan procedure: a Pediatric Heart Network multicenter study.

              We characterized a large cohort of children who had a Fontan procedure, with measures of functional health status, ventricular size and function, exercise capacity, heart rhythm, and brain natriuretic peptide (BNP). The characteristics of contemporary Fontan survivors are not well described. We enrolled 546 children (age 6 to 18 years, mean 11.9 years) and compared them within pre-specified anatomic and procedure subgroups. History and outcome measures were obtained within a 3-month period. Predominant ventricular morphology was 49% left ventricular (LV), 34% right ventricular (RV), and 19% mixed. Ejection fraction (EF) was normal for 73% of subjects; diastolic function grade was normal for 28%. Child Health Questionnaire mean summary scores were lower than for control subjects; however, over 80% of subjects were in the normal range. Brain natriuretic peptide concentration ranged from <4 to 652 pg/ml (median 13 pg/ml). Mean percent predicted peak O2 consumption was 65% and decreased with age. Ejection fraction and EF Z score were lowest, and semilunar and atrioventricular (AV) valve regurgitation were more prevalent in the RV subgroup. Older age at Fontan was associated with more severe AV valve regurgitation. Most outcomes were not associated with a superior cavopulmonary connection before Fontan. Measures of ventricular systolic function and functional health status, although lower on average in the cohort compared with control subjects, were in the majority of subjects within 2 standard deviations of the mean for control subjects. Right ventricular morphology was associated with poorer ventricular and valvular function. Effective strategies to preserve ventricular and valvular function, particularly for patients with RV morphology, are needed.
                Bookmark

                Author and article information

                Contributors
                Journal
                HeartRhythm Case Rep
                HeartRhythm Case Rep
                HeartRhythm Case Reports
                Elsevier
                2214-0271
                04 November 2022
                January 2023
                04 November 2022
                : 9
                : 1
                : 53-58
                Affiliations
                []Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
                []Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
                []Liverpool University Hospitals Foundation Trust, Royal Liverpool Hospital, Liverpool, United Kingdom
                Author notes
                [] Address reprint requests and correspondence: Dr Reza Ashrafi, Northwest Congenital Heart Disease Partnership, Liverpool Heart & Chest Hospital, Thomas Dr, Liverpool, England, UK L14 3PE. reza.ashrafi@ 123456lhch.nhs.uk
                Article
                S2214-0271(22)00217-2
                10.1016/j.hrcr.2022.10.018
                9845646
                790b149e-9b64-4b98-a027-59de988d1597
                Crown Copyright © 2022 Published by Elsevier Inc. on behalf of Heart Rhythm Society.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Case Report

                leadless pacemaker,fontan,single ventricle,transcarotid,adult congenital heart disease

                Comments

                Comment on this article