3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Half-wave plate (HWP) is one of the key polarization controlling devices in optical systems. The conventional HWPs based on birefringent crystals are inherently bulky and difficult to be monolithically integrated with other optical components. In this work, metasurface-based HWPs with high compactness are demonstrated on a 12-inch silicon complementary metal-oxide-semiconductor platform. Three-dimensional finite difference time domain simulation is used to design the nanostructure and investigate the impact of fabrication process variation on the device performance. In addition, the cross- and co-polarization transmittance ( T cross and T co) of the HWPs located at different wafer locations are characterized experimentally. The peak T cross and valley T co values of 0.69 ± 0.053 and 0.032 ± 0.005 are realized at the wavelength around 1.7 μm, respectively. This corresponds to a polarization conversion efficiency of 95.6% ± 0.8%.

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Light propagation with phase discontinuities: generalized laws of reflection and refraction.

          Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation.

            Plasmonic metasurfaces have recently attracted much attention due to their ability to abruptly change the phase of light, allowing subwavelength optical elements for polarization and wavefront control. However, most previously demonstrated metasurface designs suffer from low coupling efficiency and are based on metallic resonators, leading to ohmic loss. Here, we present an alternative approach to plasmonic metasurfaces by replacing the metallic resonators with high-refractive-index silicon cut-wires in combination with a silver ground plane. We experimentally demonstrate that this meta-reflectarray can be used to realize linear polarization conversion with more than 98% conversion efficiency over a 200 nm bandwidth in the short-wavelength infrared band. We also demonstrate optical vortex beam generation using a meta-reflectarray with an azimuthally varied phase profile. The vortex beam generation is shown to have high efficiency over a wavelength range from 1500 to 1600 nm. The use of dielectric resonators in place of their plasmonic counterparts could pave the way for ultraefficient metasurface-based devices at high frequencies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Invited Article: Broadband highly efficient dielectric metadevices for polarization control

                Bookmark

                Author and article information

                Journal
                Nanophotonics
                Walter de Gruyter GmbH
                2192-8614
                November 19 2019
                November 19 2019
                : 9
                : 1
                : 149-157
                Affiliations
                [1 ]Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore 138634, Singapore
                [2 ]School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
                Article
                10.1515/nanoph-2019-0364
                78e13e38-9272-49c9-9bb2-ca6667e4ff94
                © 2019

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article