29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low Dose Rapamycin Exacerbates Autoimmune Experimental Uveitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Rapamycin, a potent immune modulator, is used to treat transplant rejection and some autoimmune diseases. Uveitis is a potentially severe inflammatory eye disease, and 2 clinical trials of treating uveitis with rapamycin are under way. Unexpectedly, recent research has demonstrated that low dose rapamycin enhances the memory T cell population and function. However, it is unclear how low dose rapamycin influences the immune response in the setting of uveitis.

          Design and Methods

          B10.RIII mice were immunized to induce experimental autoimmune uveitis (EAU). Ocular inflammation of control and rapamycin-treated mice was compared based on histological change. ELISPOT and T cell proliferation assays were performed to assess splenocyte response to ocular antigen. In addition, we examined the effect of rapamycin on activation-induced cell death (AICD) using the MitoCapture assay and Annexin V staining.

          Results

          Administration of low dose rapamycin exacerbated EAU, whereas treating mice with high dose rapamycin attenuated ocular inflammation. The progression of EAU by low dose rapamycin coincided with the increased frequency of antigen-reactive lymphocytes. Lastly, fewer rapamycin-treated T cells underwent AICD, which might contribute to exaggerated ocular inflammation and the uveitogenic immune response.

          Conclusion

          These data reveal a paradoxical role for rapamycin in uveitis in a dose-dependent manner. This study has a potentially important clinical implication as rapamycin might cause unwanted consequences dependent on dosing and pharmacokinetics. Thus, more research is needed to further define the mechanism by which low dose rapamycin augments the immune response.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle.

          A streptomycete was isolated from an Easter Island soil sample and found to inhibit Candida albicans, Microsporum gypseum and Trichophyton granulosum. The antibiotic-producing microorganism was characterized and identified as Streptomyces hygroscopicus. The antifungal principle was extracted with organic solvent from the mycelium, isolated in crystalline form and named rapamycin. Rapamycin is mainly active against Candida albicans; minimum inhibitory concentration against ten strains ranged from 0.02 to 0.2 mug/ml. Its apparent activity against Microsporum gypseum and Trichophyton granulosum is lower because of its instability in culture media on prolonged incubation required by these fungi. No activity was observed against gram-positive and gram-negative bacteria. Acute toxicity in mice is low.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunoregulatory functions of mTOR inhibition.

            The potent immunosuppressive action of rapamycin is commonly ascribed to inhibition of growth factor-induced T cell proliferation. However, it is now evident that the serine/threonine protein kinase mammalian target of rapamycin (mTOR) has an important role in the modulation of both innate and adaptive immune responses. mTOR regulates diverse functions of professional antigen-presenting cells, such as dendritic cells (DCs), and has important roles in the activation of effector T cells and the function and proliferation of regulatory T cells. In this Review, we discuss our current understanding of the mTOR pathway and the consequences of mTOR inhibition, both in DCs and T cells, including new data on the regulation of forkhead box P3 expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism.

              In the two-signal model of T cell activation, the outcome of antigen recognition is determined by the integration of multiple cues in the immune microenvironment. mTOR is an evolutionarily conserved PI3-kinase family member that plays a central role in integrating environmental cues in the form of amino acids, energy, and growth factors. Recently, an increasingly important role for mTOR in directing T cell activation and differentiation has become apparent. Here we review recent findings demonstrating the ability of mTOR to interpret signals in the immune microenvironment and program the generation of CD4(+) effector versus regulatory T cells, the generation of CD8(+) effector versus memory cells, T cell trafficking, and T cell activation versus anergy. The key theme to emerge from these studies is that the central role of mTOR provides a direct link between T cell metabolism and function. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                4 May 2012
                : 7
                : 5
                : e36589
                Affiliations
                [1 ]Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
                [2 ]Portland VA Medical Center, Portland, Oregon, United States of America
                [3 ]Department of Ophthalmology, Oregon Health & Science University, Portland, Oregon, United States of America
                [4 ]Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
                La Jolla Institute for Allergy and Immunology, United States of America
                Author notes

                Conceived and designed the experiments: ZZ JTR DH. Performed the experiments: ZZ XW JD GLZ KW MH. Analyzed the data: ZZ JTR DH. Contributed reagents/materials/analysis tools: KW. Wrote the paper: ZZ.

                Article
                PONE-D-11-23929
                10.1371/journal.pone.0036589
                3344911
                22574188
                7849a2e4-dbab-492e-96d7-a6c15edc4f30
                Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 November 2011
                : 3 April 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                T Cells
                Autoimmunity
                Immune Response
                Immunopathology
                Medicine
                Clinical Immunology
                Immune Cells
                T Cells
                Autoimmune Diseases
                Ophthalmology
                Retinal Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article