77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fatal Transmissible Amyloid Encephalopathy: A New Type of Prion Disease Associated with Lack of Prion Protein Membrane Anchoring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer's disease.

          Author Summary

          Prion diseases, also known as transmissible spongiform encephalopathies, are infectious fatal neurodegenerative diseases of humans and animals. A major feature of prion diseases is the refolding and aggregation of a normal host protein, prion protein (PrP), into a disease-associated form which may contribute to brain damage. In uninfected individuals, normal PrP is anchored to the outer cell membrane by a sugar-phosphate-lipid linker molecule. In the present report we show that prion infection of mice expressing PrP lacking the anchor can result in a new type of fatal neurodegenerative disease. This disease displays mechanisms of damage to brain cells and brain blood vessels found in Alzheimer's disease and in familial amyloid brain diseases. In contrast, the typical sponge-like brain damage seen in prion diseases was not observed. These results suggest that presence or absence of PrP membrane anchoring can influence the type of neurodegeneration seen after prion infection.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Anchorless prion protein results in infectious amyloid disease without clinical scrapie.

          In prion and Alzheimer's diseases, the roles played by amyloid versus nonamyloid deposits in brain damage remain unresolved. In scrapie-infected transgenic mice expressing prion protein (PrP) lacking the glycosylphosphatidylinositol (GPI) membrane anchor, abnormal protease-resistant PrPres was deposited as amyloid plaques, rather than the usual nonamyloid form of PrPres. Although PrPres amyloid plaques induced brain damage reminiscent of Alzheimer's disease, clinical manifestations were minimal. In contrast, combined expression of anchorless and wild-type PrP produced accelerated clinical scrapie. Thus, the PrP GPI anchor may play a role in the pathogenesis of prion diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication.

            Transgenic (Tg) mice expressing both Syrian hamster (Ha) and mouse (Mo) prion protein (PrP) genes were used to probe the mechanism of scrapie prion replication. Four Tg lines expressing HaPrP exhibited distinct incubation times ranging from 48 to 277 days, which correlated inversely with HaPrP mRNA and HaPrPC. Bioassays of Tg brain extracts showed that the prion inoculum dictates which prions are synthesized de novo. Tg mice inoculated with Ha prions had approximately 10(9) ID50 units of Ha prions per gram of brain and less than 10 units of Mo prions. Conversely, Tg mice inoculated with Mo prions synthesized Mo prions but not Ha prions. Similarly, Tg mice inoculated with Ha prions exhibited neuropathologic changes characteristic of hamsters with scrapie, while Mo prions produced changes similar to those in non-Tg mice. Our results argue that species specificity of scrapie prions resides in the PrP sequence and prion synthesis is initiated by a species-specific interaction between PrPSc in the inoculum and homologous PrPC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal.

              The neural membrane glycoprotein PrP is implicated in the pathogenesis of the transmissible spongiform encephalopathies; however, the normal function of PrP and its precise role in disease are not understood. Recently, gene targeting has been used to produce mice with neo/PrP fusion transcripts, but no detectable PrP protein in the brain (1). Here we report the use of a different targeting strategy, to produce inbred mice with a complete absence of both PrP protein and mRNA sequences. At 7 mo of age, these mice show no overt phenotypic abnormalities despite the normal high levels of expression of PrP during mouse development. The mice are being used in experiments designed to address the role of PrP in the pathogenesis of scrapie and the replication of infectivity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2010
                March 2010
                5 March 2010
                : 6
                : 3
                : e1000800
                Affiliations
                [1 ]Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
                [2 ]Electron Microscopy Section, Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
                [3 ]VLA (Lasswade), Penicuik, Scotland, United Kingdom
                University of Alberta, Canada
                Author notes

                Conceived and designed the experiments: BC BR KMW RR MJ. Performed the experiments: BR KMW RL RR DD GM MJ. Analyzed the data: BC BR KMW MK JS MJ. Wrote the paper: BC BR KMW MK MJ.

                Article
                09-PLPA-RA-1714R2
                10.1371/journal.ppat.1000800
                2832701
                20221436
                76d7a28c-bd49-4e44-b2dc-2401c93c26be
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 25 September 2009
                : 29 January 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Infectious Diseases/Prion Diseases
                Neurological Disorders/Prion Diseases
                Pathology/Neuropathology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article