Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Periodontal health and disease: The contribution of genetics

      1 , 2 , 3
      Periodontology 2000
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          A core gut microbiome in obese and lean twins

          The human distal gut harbors a vast ensemble of microbes (the microbiota) that provide us with important metabolic capabilities, including the ability to extract energy from otherwise indigestible dietary polysaccharides1–6. Studies of a small number of unrelated, healthy adults have revealed substantial diversity in their gut communities, as measured by sequencing 16S rRNA genes6–8, yet how this diversity relates to function and to the rest of the genes in the collective genomes of the microbiota (the gut microbiome) remains obscure. Studies of lean and obese mice suggest that the gut microbiota affects energy balance by influencing the efficiency of calorie harvest from the diet, and how this harvested energy is utilized and stored3–5. To address the question of how host genotype, environmental exposures, and host adiposity influence the gut microbiome, we have characterized the fecal microbial communities of adult female monozygotic and dizygotic twin pairs concordant for leanness or obesity, and their mothers. Analysis of 154 individuals yielded 9,920 near full-length and 1,937,461 partial bacterial 16S rRNA sequences, plus 2.14 gigabases from their microbiomes. The results reveal that the human gut microbiome is shared among family members, but that each person’s gut microbial community varies in the specific bacterial lineages present, with a comparable degree of co-variation between adult monozygotic and dizygotic twin pairs. However, there was a wide array of shared microbial genes among sampled individuals, comprising an extensive, identifiable ‘core microbiome’ at the gene, rather than at the organismal lineage level. Obesity is associated with phylum-level changes in the microbiota, reduced bacterial diversity, and altered representation of bacterial genes and metabolic pathways. These results demonstrate that a diversity of organismal assemblages can nonetheless yield a core microbiome at a functional level, and that deviations from this core are associated with different physiologic states (obese versus lean).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The oral microbiota: dynamic communities and host interactions

            The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common SNPs explain a large proportion of the heritability for human height.

              SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
                Bookmark

                Author and article information

                Journal
                Periodontology 2000
                Periodontol 2000
                Wiley
                0906-6713
                1600-0757
                February 2021
                November 23 2020
                February 2021
                : 85
                : 1
                : 161-181
                Affiliations
                [1 ]Division of Periodontology Department of Oral Health Practice University of Kentucky College of Dentistry Lexington Kentucky USA
                [2 ]Division of Orthodontics Department of Oral Health Sciences University of Kentucky College of Dentistry Lexington Kentucky USA
                [3 ]Faculty of Dentistry, Oral & Craniofacial Sciences Kings College LondonGuy's Hospital London UK
                Article
                10.1111/prd.12357
                33226705
                768065fc-e139-424b-a126-0a1e3e42559f
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,345

                Cited by22

                Most referenced authors1,825