26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      European perspectives on efforts to reduce antimicrobial usage in food animal production

      review-article
      Irish Veterinary Journal
      BioMed Central
      Antimicrobials, Usage, Resistance, Food animals, Europe

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New regulations on veterinary medicines and medicated feed will substantially influence antimicrobial prescribing and usage throughout Europe into the future. These regulations have been informed by a very large body of work, including the substantial progress towards reduced antimicrobial usage in food animal production in a number of member states of the European Union (EU). This paper seeks to summarise European perspectives on efforts to reduce antimicrobial usage in food animal production. Work within the EU is informed by the global action plan of the World Health Organization, which includes a strategic objective to optimise the use of antimicrobial medicines in human and animal health. There is ongoing measurement of trends in antimicrobial usage and resistance throughout the EU, and detailed information on strategies to reduce the need to use antimicrobials in food animal production. Substantial scientific progress has been made on the measurement of antimicrobial usage, including at herd-level, and on the objective assessment of farm biosecurity. In a number of EU member states, monitoring systems for usage are well-established, allowing benchmarking for veterinarians and farms, and monitoring of national and industry-level trends. Several countries have introduced restrictions on antimicrobial prescribing and usage, including strategies to limit conflicts of interest around antimicrobial prescribing and usage. Further, a broad range of measures are being used across member states to reduce the need for antimicrobial usage in food animal production, focusing both at farm level and nationally. Veterinarians play a central role in the reduction of antimicrobial usage in farm animals. Ireland’s National Action Plan on Antimicrobial Resistance 2017–20 ( iNAP) provides an overview of Ireland’s commitment to the development and implementation of a holistic, cross-sectoral ‘One Health’ approach to the problem of antimicrobial resistance. The new regulations offer an important springboard for further progress, in order to preserve the efficacy of existing antimicrobials, which are a critical international resource.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017

          (2019)
          Abstract The data on antimicrobial resistance in zoonotic and indicator bacteria in 2017, submitted by 28 EU Member States (MSs), were jointly analysed by EFSA and ECDC. Resistance in zoonotic Salmonella and Campylobacter from humans, animals and food, and resistance in indicator Escherichia coli as well as meticillin‐resistant Staphylococcus aureus in animals and food were addressed, and temporal trends assessed. ‘Microbiological’ resistance was assessed using epidemiological cut‐off (ECOFF) values; for some countries, qualitative data on human isolates were interpreted in a way which corresponds closely to the ECOFF‐defined ‘microbiological’ resistance. In Salmonella from humans, as well as in Salmonella and E. coli isolates from fattening pigs and calves of less than 1 year of age, high proportions of isolates were resistant to ampicillin, sulfonamides and tetracyclines, whereas resistance to third‐generation cephalosporins was uncommon. Varying occurrence/prevalence rates of presumptive extended‐spectrum beta‐lactamase (ESBL)/AmpC producers in Salmonella and E. coli monitored in meat (pork and beef), fattening pigs and calves, and Salmonella monitored in humans, were observed between countries. Carbapenemase‐producing E. coli were detected in one single sample from fattening pigs in one MS. Resistance to colistin was observed at low levels in Salmonella and E. coli from fattening pigs and calves and meat thereof and in Salmonella from humans. In Campylobacter from humans, high to extremely high proportions of isolates were resistant to ciprofloxacin and tetracyclines, particularly in Campylobacter coli. In five countries, high to very high proportions of C. coli from humans were resistant also to erythromycin, leaving few options for treatment of severe Campylobacter infections. High resistance to ciprofloxacin and tetracyclines was observed in C. coli isolates from fattening pigs, whereas much lower levels were recorded for erythromycin. Combined resistance to critically important antimicrobials in both human and animal isolates was generally uncommon but very high to extremely high multidrug resistance levels were observed in S. Typhimurium and its monophasic variant in both humans and animals. S. Kentucky from humans exhibited high‐level resistance to ciprofloxacin, in addition to a high prevalence of ESBL.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            World Health Organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals.

            The use of antimicrobials in food animals creates an important source of antimicrobial-resistant bacteria that can spread to humans through the food supply. Improved management of the use of antimicrobials in food animals, particularly reducing the usage of those that are "critically important" for human medicine, is an important step toward preserving the benefits of antimicrobials for people. The World Health Organization has developed and applied criteria to rank antimicrobials according to their relative importance in human medicine. Clinicians, regulatory agencies, policy makers, and other stakeholders can use this ranking when developing risk management strategies for the use of antimicrobials in food production animals. The ranking allows stakeholders to focus risk management efforts on drugs used in food animals that are the most important to human medicine and, thus, need to be addressed most urgently, such as fluoroquinolones, macrolides, and third- and fourth-generation cephalosporins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extended-spectrum β-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors.

              The worldwide prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is increasing rapidly both in hospitals and in the community. A connection between ESBL-producing bacteria in food animals, retail meat, and humans has been suggested. We previously reported on the genetic composition of a collection of ESBL-producing Escherichia coli (ESBL-EC) from chicken meat and humans from a restricted geographic area. Now, we have extended the analysis with plasmid replicons, virulence factors, and highly discriminatory genomic profiling methods. One hundred forty-five ESBL-EC isolates from retail chicken meat, human rectal carriers, and blood cultures were analyzed using multilocus sequence typing, phylotyping, ESBL genes, plasmid replicons, virulence genes, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE). Three source groups overlapped substantially when their genetic composition was compared. A combined analysis using all variables yielded the highest resolution (Wilks lambda [Λ]: 0.08). Still, a prediction model based on the combined data classified 40% of the human isolates as chicken meat isolates. AFLP and PFGE showed that the isolates from humans and chicken meat could not be segregated and identified 1 perfect match between humans and chicken meat. We found significant genetic similarities among ESBL-EC isolates from chicken meat and humans according to mobile resistance elements, virulence genes, and genomic backbone. Therefore, chicken meat is a likely contributor to the recent emergence of ESBL-EC in human infections in the study region. This raises serious food safety questions regarding the abundant presence of ESBL-EC in chicken meat.
                Bookmark

                Author and article information

                Contributors
                simon.more@ucd.ie
                Journal
                Ir Vet J
                Ir Vet J
                Irish Veterinary Journal
                BioMed Central (London )
                0368-0762
                2046-0481
                27 January 2020
                27 January 2020
                2020
                : 73
                : 2
                Affiliations
                ISNI 0000 0001 0768 2743, GRID grid.7886.1, Centre for Veterinary Epidemiology and Risk Analysis, , UCD School of Veterinary Medicine, University College Dublin, ; Belfield, Dublin, D04 W6F6 Ireland
                Author information
                http://orcid.org/0000-0002-4270-0385
                Article
                154
                10.1186/s13620-019-0154-4
                6986017
                32002180
                75d50102-a7cd-4a0f-ba98-336a0c7e4fe5
                © The Author(s). 2020

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 September 2019
                : 10 December 2019
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Veterinary medicine
                antimicrobials,usage,resistance,food animals,europe
                Veterinary medicine
                antimicrobials, usage, resistance, food animals, europe

                Comments

                Comment on this article