Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Challenges in application of Raman spectroscopy to biology and materials

      review-article
      , , ,
      RSC Advances
      The Royal Society of Chemistry

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Raman spectroscopy has become an essential tool for chemists, physicists, biologists and materials scientists. In this article, we present the challenges in unravelling the molecule-specific Raman spectral signatures of different biomolecules like proteins, nucleic acids, lipids and carbohydrates based on the review of our work and the current trends in these areas. We also show how Raman spectroscopy can be used to probe the secondary and tertiary structural changes occurring during thermal denaturation of protein and lysozyme as well as more complex biological systems like bacteria. Complex biological systems like tissues, cells, blood serum etc. are also made up of such biomolecules. Using mice liver and blood serum, it is shown that different tissues yield their unique signature Raman spectra, owing to a difference in the relative composition of the biomolecules. Additionally, recent progress in Raman spectroscopy for diagnosing a multitude of diseases ranging from cancer to infection is also presented. The second part of this article focuses on applications of Raman spectroscopy to materials. As a first example, Raman spectroscopy of a melt cast explosives formulation was carried out to monitor the changes in the peaks which indicates the potential of this technique for remote process monitoring. The second example presents various modern methods of Raman spectroscopy such as spatially offset Raman spectroscopy (SORS), reflection, transmission and universal multiple angle Raman spectroscopy (UMARS) to study layered materials. Studies on chemicals/layered materials hidden in non-metallic containers using the above variants are presented. Using suitable examples, it is shown how a specific excitation or collection geometry can yield different information about the location of materials. Additionally, it is shown that UMARS imaging can also be used as an effective tool to obtain layer specific information of materials located at depths beyond a few centimeters.

          Abstract

          This paper reviews various facets of Raman spectroscopy. This encompasses biomolecule fingerprinting and conformational analysis, discrimination of healthy vs. diseased states, depth-specific information of materials and 3D Raman imaging.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Raman spectrum of graphene and graphene layers.

          Graphene is the two-dimensional building block for carbon allotropes of every other dimensionality. We show that its electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers. The D peak second order changes in shape, width, and position for an increasing number of layers, reflecting the change in the electron bands via a double resonant Raman process. The G peak slightly down-shifts. This allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Raman spectroscopy as a versatile tool for studying the properties of graphene

            Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Raman spectroscopy of carbon nanotubes

                Bookmark

                Author and article information

                Journal
                RSC Adv
                RSC Adv
                RA
                RSCACL
                RSC Advances
                The Royal Society of Chemistry
                2046-2069
                20 July 2018
                19 July 2018
                20 July 2018
                : 8
                : 46
                : 25888-25908
                Affiliations
                [a] Department of Inorganic & Physical Chemistry, Indian Institute of Science Bangalore India-560012 umapathy@ 123456iisc.ac.in
                [b] Defence Bioengineering & Electromedical Laboratory, DRDO C V Raman Nagar Bangalore India-560093
                [c] Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore India-560012
                [d] Department of Instrumentation & Applied Physics, Indian Institute of Science Bangalore India-560012
                Author notes
                [†]

                All the authors have contributed equally and the names have been provided in alphabetical order.

                Author information
                https://orcid.org/0000-0002-8538-5004
                Article
                c8ra04491k
                10.1039/c8ra04491k
                9083091
                35541973
                75916a48-240e-4915-aca3-d7fac2028a4c
                This journal is © The Royal Society of Chemistry
                History
                : 25 May 2018
                : 9 July 2018
                Page count
                Pages: 21
                Funding
                Funded by: Department of Science and Technology, Ministry of Science and Technology, doi 10.13039/501100001409;
                Award ID: Unassigned
                Funded by: Defence Research and Development Organisation, doi 10.13039/501100001849;
                Award ID: Unassigned
                Funded by: Council for Scientific and Industrial Research, doi 10.13039/501100001332;
                Award ID: Unassigned
                Funded by: Indian Institute of Science, doi 10.13039/100007780;
                Award ID: Unassigned
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content175

                Cited by80

                Most referenced authors1,958