11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Insulin resistance (IR) has been shown to play important role in the pathogenesis of type 2 diabetes mellitus (T2DM). There is an intricate interplay between IR, dyslipidemia, and serum uric acid (SUA) in people with and without diabetes. Physical activity has a positive impact on insulin sensitivity in insulin-resistant populations. However, the effect of different intensities of physical activity on insulin levels under different lipid indices and SUA levels is unclear.

          Methods

          To explore the association between physical activity and insulin, we enrolled 12,982 participants aged above 18 years from the National Health and Nutrition Examination Survey (NHANES) conducted between 2009 and 2018. Next, we conducted multivariate logistic regression analyses, generated fitted smoothing curves, and visualized the data using generalized additive models.

          Results

          Increased intensities of physical activity can significantly reduce insulin levels. The association between physical activity and insulin persisted even after adjusting for confounding factors, with β value (95% CI) = −17.10 (−21.64, −12.56) in moderate group, β value (95% CI) = −28.60 (−33.08, −24.11) in high group, respectively. High-intensity physical activity significantly lowered insulin levels in the lower and higher SUA tertiles, and three tertiles of LDL-c, HDL-c, and TG. Moreover, the link between physical activity and insulin was stronger in male individuals.

          Conclusion

          This study shows that physical activity can significantly lower insulin levels, and high-intensity physical activity still has additional potential benefits for insulin levels, even in the condition of dyslipidemia and hyperuricemia.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise.

          The purpose of this Position Stand is to provide guidance to professionals who counsel and prescribe individualized exercise to apparently healthy adults of all ages. These recommendations also may apply to adults with certain chronic diseases or disabilities, when appropriately evaluated and advised by a health professional. This document supersedes the 1998 American College of Sports Medicine (ACSM) Position Stand, "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults." The scientific evidence demonstrating the beneficial effects of exercise is indisputable, and the benefits of exercise far outweigh the risks in most adults. A program of regular exercise that includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training beyond activities of daily living to improve and maintain physical fitness and health is essential for most adults. The ACSM recommends that most adults engage in moderate-intensity cardiorespiratory exercise training for ≥30 min·d on ≥5 d·wk for a total of ≥150 min·wk, vigorous-intensity cardiorespiratory exercise training for ≥20 min·d on ≥3 d·wk (≥75 min·wk), or a combination of moderate- and vigorous-intensity exercise to achieve a total energy expenditure of ≥500-1000 MET·min·wk. On 2-3 d·wk, adults should also perform resistance exercises for each of the major muscle groups, and neuromotor exercise involving balance, agility, and coordination. Crucial to maintaining joint range of movement, completing a series of flexibility exercises for each the major muscle-tendon groups (a total of 60 s per exercise) on ≥2 d·wk is recommended. The exercise program should be modified according to an individual's habitual physical activity, physical function, health status, exercise responses, and stated goals. Adults who are unable or unwilling to meet the exercise targets outlined here still can benefit from engaging in amounts of exercise less than recommended. In addition to exercising regularly, there are health benefits in concurrently reducing total time engaged in sedentary pursuits and also by interspersing frequent, short bouts of standing and physical activity between periods of sedentary activity, even in physically active adults. Behaviorally based exercise interventions, the use of behavior change strategies, supervision by an experienced fitness instructor, and exercise that is pleasant and enjoyable can improve adoption and adherence to prescribed exercise programs. Educating adults about and screening for signs and symptoms of CHD and gradual progression of exercise intensity and volume may reduce the risks of exercise. Consultations with a medical professional and diagnostic exercise testing for CHD are useful when clinically indicated but are not recommended for universal screening to enhance the safety of exercise.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies

            Introduction Many questions in medical research are investigated in observational studies [1]. Much of the research into the cause of diseases relies on cohort, case-control, or cross-sectional studies. Observational studies also have a role in research into the benefits and harms of medical interventions [2]. Randomised trials cannot answer all important questions about a given intervention. For example, observational studies are more suitable to detect rare or late adverse effects of treatments, and are more likely to provide an indication of what is achieved in daily medical practice [3]. Research should be reported transparently so that readers can follow what was planned, what was done, what was found, and what conclusions were drawn. The credibility of research depends on a critical assessment by others of the strengths and weaknesses in study design, conduct, and analysis. Transparent reporting is also needed to judge whether and how results can be included in systematic reviews [4,5]. However, in published observational research important information is often missing or unclear. An analysis of epidemiological studies published in general medical and specialist journals found that the rationale behind the choice of potential confounding variables was often not reported [6]. Only few reports of case-control studies in psychiatry explained the methods used to identify cases and controls [7]. In a survey of longitudinal studies in stroke research, 17 of 49 articles (35%) did not specify the eligibility criteria [8]. Others have argued that without sufficient clarity of reporting, the benefits of research might be achieved more slowly [9], and that there is a need for guidance in reporting observational studies [10,11]. Recommendations on the reporting of research can improve reporting quality. The Consolidated Standards of Reporting Trials (CONSORT) Statement was developed in 1996 and revised 5 years later [12]. Many medical journals supported this initiative [13], which has helped to improve the quality of reports of randomised trials [14,15]. Similar initiatives have followed for other research areas—e.g., for the reporting of meta-analyses of randomised trials [16] or diagnostic studies [17]. We established a network of methodologists, researchers, and journal editors to develop recommendations for the reporting of observational research: the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement. Aims and Use of the STROBE Statement The STROBE Statement is a checklist of items that should be addressed in articles reporting on the 3 main study designs of analytical epidemiology: cohort, case-control, and cross-sectional studies. The intention is solely to provide guidance on how to report observational research well: these recommendations are not prescriptions for designing or conducting studies. Also, while clarity of reporting is a prerequisite to evaluation, the checklist is not an instrument to evaluate the quality of observational research. Here we present the STROBE Statement and explain how it was developed. In a detailed companion paper, the Explanation and Elaboration article [18–20], we justify the inclusion of the different checklist items and give methodological background and published examples of what we consider transparent reporting. We strongly recommend using the STROBE checklist in conjunction with the explanatory article, which is available freely on the Web sites of PLoS Medicine (http://www.plosmedicine.org/), Annals of Internal Medicine (http://www.annals.org/), and Epidemiology (http://www.epidem.com/). Development of the STROBE Statement We established the STROBE Initiative in 2004, obtained funding for a workshop and set up a Web site (http://www.strobe-statement.org/). We searched textbooks, bibliographic databases, reference lists, and personal files for relevant material, including previous recommendations, empirical studies of reporting and articles describing relevant methodological research. Because observational research makes use of many different study designs, we felt that the scope of STROBE had to be clearly defined early on. We decided to focus on the 3 study designs that are used most widely in analytical observational research: cohort, case-control, and cross-sectional studies. We organised a 2-day workshop in Bristol, UK, in September 2004. 23 individuals attended this meeting, including editorial staff from Annals of Internal Medicine, BMJ, Bulletin of the World Health Organization, International Journal of Epidemiology, JAMA, Preventive Medicine, and The Lancet, as well as epidemiologists, methodologists, statisticians, and practitioners from Europe and North America. Written contributions were sought from 10 other individuals who declared an interest in contributing to STROBE, but could not attend. Three working groups identified items deemed to be important to include in checklists for each type of study. A provisional list of items prepared in advance (available from our Web site) was used to facilitate discussions. The 3 draft checklists were then discussed by all participants and, where possible, items were revised to make them applicable to all three study designs. In a final plenary session, the group decided on the strategy for finalizing and disseminating the STROBE Statement. After the workshop we drafted a combined checklist including all three designs and made it available on our Web site. We invited participants and additional scientists and editors to comment on this draft checklist. We subsequently published 3 revisions on the Web site, and 2 summaries of comments received and changes made. During this process the coordinating group (i.e., the authors of the present paper) met on eight occasions for 1 or 2 days and held several telephone conferences to revise the checklist and to prepare the present paper and the Explanation and Elaboration paper [18–20]. The coordinating group invited 3 additional co-authors with methodological and editorial expertise to help write the Explanation and Elaboration paper, and sought feedback from more than 30 people, who are listed at the end of this paper. We allowed several weeks for comments on subsequent drafts of the paper and reminded collaborators about deadlines by e-mail. STROBE Components The STROBE Statement is a checklist of 22 items that we consider essential for good reporting of observational studies (Table 1). These items relate to the article's title and abstract (item 1), the introduction (items 2 and 3), methods (items 4–12), results (items 13–17) and discussion sections (items 18–21), and other information (item 22 on funding). 18 items are common to all three designs, while four (items 6, 12, 14, and 15) are design-specific, with different versions for all or part of the item. For some items (indicated by asterisks), information should be given separately for cases and controls in case-control studies, or exposed and unexposed groups in cohort and cross-sectional studies. Although presented here as a single checklist, separate checklists are available for each of the 3 study designs on the STROBE Web site. Table 1 The STROBE Statement—Checklist of Items That Should Be Addressed in Reports of Observational Studies Implications and Limitations The STROBE Statement was developed to assist authors when writing up analytical observational studies, to support editors and reviewers when considering such articles for publication, and to help readers when critically appraising published articles. We developed the checklist through an open process, taking into account the experience gained with previous initiatives, in particular CONSORT. We reviewed the relevant empirical evidence as well as methodological work, and subjected consecutive drafts to an extensive iterative process of consultation. The checklist presented here is thus based on input from a large number of individuals with diverse backgrounds and perspectives. The comprehensive explanatory article [18–20], which is intended for use alongside the checklist, also benefited greatly from this consultation process. Observational studies serve a wide range of purposes, on a continuum from the discovery of new findings to the confirmation or refutation of previous findings [18–20]. Some studies are essentially exploratory and raise interesting hypotheses. Others pursue clearly defined hypotheses in available data. In yet another type of studies, the collection of new data is planned carefully on the basis of an existing hypothesis. We believe the present checklist can be useful for all these studies, since the readers always need to know what was planned (and what was not), what was done, what was found, and what the results mean. We acknowledge that STROBE is currently limited to three main observational study designs. We would welcome extensions that adapt the checklist to other designs—e.g., case-crossover studies or ecological studies—and also to specific topic areas. Four extensions are now available for the CONSORT statement [21–24]. A first extension to STROBE is underway for gene-disease association studies: the STROBE Extension to Genetic Association studies (STREGA) initiative [25]. We ask those who aim to develop extensions of the STROBE Statement to contact the coordinating group first to avoid duplication of effort. The STROBE Statement should not be interpreted as an attempt to prescribe the reporting of observational research in a rigid format. The checklist items should be addressed in sufficient detail and with clarity somewhere in an article, but the order and format for presenting information depends on author preferences, journal style, and the traditions of the research field. For instance, we discuss the reporting of results under a number of separate items, while recognizing that authors might address several items within a single section of text or in a table. Also, item 22, on the source of funding and the role of funders, could be addressed in an appendix or in the methods section of the article. We do not aim at standardising reporting. Authors of randomised clinical trials were asked by an editor of a specialist medical journal to “CONSORT” their manuscripts on submission [26]. We believe that manuscripts should not be “STROBEd”, in the sense of regulating style or terminology. We encourage authors to use narrative elements, including the description of illustrative cases, to complement the essential information about their study, and to make their articles an interesting read [27]. We emphasise that the STROBE Statement was not developed as a tool for assessing the quality of published observational research. Such instruments have been developed by other groups and were the subject of a recent systematic review [28]. In the Explanation and Elaboration paper, we used several examples of good reporting from studies whose results were not confirmed in further research – the important feature was the good reporting, not whether the research was of good quality. However, if STROBE is adopted by authors and journals, issues such as confounding, bias, and generalisability could become more transparent, which might help temper the over-enthusiastic reporting of new findings in the scientific community and popular media [29], and improve the methodology of studies in the long term. Better reporting may also help to have more informed decisions about when new studies are needed, and what they should address. We did not undertake a comprehensive systematic review for each of the checklist items and sub-items, or do our own research to fill gaps in the evidence base. Further, although no one was excluded from the process, the composition of the group of contributors was influenced by existing networks and was not representative in terms of geography (it was dominated by contributors from Europe and North America) and probably was not representative in terms of research interests and disciplines. We stress that STROBE and other recommendations on the reporting of research should be seen as evolving documents that require continual assessment, refinement, and, if necessary, change. We welcome suggestions for the further dissemination of STROBE—e.g., by re-publication of the present article in specialist journals and in journals published in other languages. Groups or individuals who intend to translate the checklist to other languages should consult the coordinating group beforehand. We will revise the checklist in the future, taking into account comments, criticism, new evidence, and experience from its use. We invite readers to submit their comments via the STROBE Web site (http://www.strobe-statement.org/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              2011 Compendium of Physical Activities: a second update of codes and MET values.

              The Compendium of Physical Activities was developed to enhance the comparability of results across studies using self-report physical activity (PA) and is used to quantify the energy cost of a wide variety of PA. We provide the second update of the Compendium, called the 2011 Compendium. The 2011 Compendium retains the previous coding scheme to identify the major category headings and specific PA by their rate of energy expenditure in MET. Modifications in the 2011 Compendium include cataloging measured MET values and their source references, when available; addition of new codes and specific activities; an update of the Compendium tracking guide that links information in the 1993, 2000, and 2011 compendia versions; and the creation of a Web site to facilitate easy access and downloading of Compendium documents. Measured MET values were obtained from a systematic search of databases using defined key words. The 2011 Compendium contains 821 codes for specific activities. Two hundred seventeen new codes were added, 68% (561/821) of which have measured MET values. Approximately half (317/604) of the codes from the 2000 Compendium were modified to improve the definitions and/or to consolidate specific activities and to update estimated MET values where measured values did not exist. Updated MET values accounted for 73% of all code changes. The Compendium is used globally to quantify the energy cost of PA in adults for surveillance activities, research studies, and, in clinical settings, to write PA recommendations and to assess energy expenditure in individuals. The 2011 Compendium is an update of a system for quantifying the energy cost of adult human PA and is a living document that is moving in the direction of being 100% evidence based.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                02 February 2022
                2022
                : 13
                : 809669
                Affiliations
                Department of Cardiology, First Affiliated Hospital of Dalian Medical University , Dalian, China
                Author notes

                Edited by: Hassane Zouhal, University of Rennes 2 – Upper Brittany, France

                Reviewed by: Yingyun Gong, Nanjing Medical University, China; Lorenzo Romano, University of Rome Tor Vergata, Italy

                *Correspondence: Ying Zhang, zy114129@ 123456sina.com

                These authors have contributed equally to this work

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2022.809669
                8847671
                35185617
                74631aa4-2cb7-4e7d-99ef-97cff7e5efa3
                Copyright © 2022 Lin, Fan, Hao, Li, Yang, Zhang and Xia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 November 2021
                : 06 January 2022
                Page count
                Figures: 2, Tables: 4, Equations: 0, References: 71, Pages: 12, Words: 9162
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81900439
                Award ID: 81970286
                Funded by: Major Program of Science and Technology of Liaoning
                Award ID: 2021JH1/10400050
                Funded by: Science Foundation of Doctors of Liaoning Province
                Award ID: 2020-BS-197
                Funded by: Chang Jiang Scholars Program
                Award ID: T2017124
                Funded by: Dalian Talents Innovation Supporting Project
                Award ID: 2018RD09
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                physical activity,insulin,nhanes,sua,lipids
                Anatomy & Physiology
                physical activity, insulin, nhanes, sua, lipids

                Comments

                Comment on this article