46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanofiber technology: designing the next generation of tissue engineering scaffolds.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue engineering is an interdisciplinary field that has attempted to utilize a variety of processing methods with synthetic and natural polymers to fabricate scaffolds for the regeneration of tissues and organs. The study of structure-function relationships in both normal and pathological tissues has been coupled with the development of biologically active substitutes or engineered materials. The fibrillar collagens, types I, II, and III, are the most abundant natural polymers in the body and are found throughout the interstitial spaces where they function to impart overall structural integrity and strength to tissues. The collagen structures, referred to as extracellular matrix (ECM), provide the cells with the appropriate biological environment for embryologic development, organogenesis, cell growth, and wound repair. In the native tissues, the structural ECM proteins range in diameter from 50 to 500 nm. In order to create scaffolds or ECM analogues, which are truly biomimicking at this scale, one must employ nanotechnology. Recent advances in nanotechnology have led to a variety of approaches for the development of engineered ECM analogues. To date, three processing techniques (self-assembly, phase separation, and electrospinning) have evolved to allow the fabrication of nanofibrous scaffolds. With these advances, the long-awaited and much anticipated construction of a truly "biomimicking" or "ideal" tissue engineered environment, or scaffold, for a variety of tissues is now highly feasible. This review will discuss the three primary technologies (with a focus on electrospinning) available to create tissue engineering scaffolds that are capable of mimicking native tissue, as well as explore the wide array of materials investigated for use in scaffolds.

          Related collections

          Author and article information

          Journal
          Adv Drug Deliv Rev
          Advanced drug delivery reviews
          Elsevier BV
          0169-409X
          0169-409X
          Dec 10 2007
          : 59
          : 14
          Affiliations
          [1 ] Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067, USA.
          Article
          S0169-409X(07)00186-X
          10.1016/j.addr.2007.04.022
          17916396
          745abe13-4949-4e2c-ac3c-d7c8148d4ee0
          History

          Comments

          Comment on this article