13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanical behaviour of endodontic restorations with multiple prefabricated posts: a finite-element approach.

      1 , ,
      Journal of biomechanics
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper investigates some mechanical aspects of a new endodontic restoration technique, based on the idea that the root cavity can be more efficiently filled if multiple prefabricated composite posts (PCP) are employed. Multi-post technique increases bearing capacity and durability of endodontically treated teeth, as shown by numerical simulations performed through three-dimensional elastic finite-element static analyses of a lower premolar, constrained by a non-linearly elastic spring system representing the periodontal ligament, under several parafunctional loads. The influence of PCPs' number, material and dimensions is investigated by comparison of the resulting stress fields with those obtained in cases of traditional restorations (cast metal post and cemented single-PCP) and natural tooth, highlighting the advantages of the proposed technique when standard restorative materials are considered. A risk-analysis of root-fracture and interface-failure shows that cast gold-alloy post produces high stress concentrations at post-dentin interface, whereas multi-post solution leads to a behaviour closer to the natural tooth's, exhibiting some advantages with respect to single-PCP restorations. As a matter of fact, whenever PCPs' overall cross-section area increases, multi-post solution induces a significant reduction of stress levels into the residual dentin (and therefore the root-fracture-risk decreases) as well as of the expected polymerization shrinkage effects. Moreover, interfacial stress values in multi-post restorations can be higher than the single-PCP ones when carbon-fibre posts are considered. Nevertheless, the interfacial adhesive/cohesive failure-risk is certainly acceptable if glass-fibre posts are employed.

          Related collections

          Author and article information

          Journal
          J Biomech
          Journal of biomechanics
          Elsevier BV
          0021-9290
          0021-9290
          2007
          : 40
          : 11
          Affiliations
          [1 ] Dipartimento di Ingegneria Civile, Università di Roma Tor Vergata, Viale Politecnico 1, 00133 Rome, Italy.
          Article
          S0021-9290(06)00476-3
          10.1016/j.jbiomech.2006.11.018
          17254588
          74253428-0711-4b59-9e48-ca4ccd6885ca
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content124

          Cited by25