54
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-3α and Gsk-3β, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells (ESCs) has previously been shown to lead to the constitutive activation of the Wnt/β-catenin signaling pathway. However, in addition to Wnt signaling, all Gsk-3-regulated pathways, such as insulin signaling, are also affected simultaneously in Gsk-3α / ; Gsk-3β / ESCs. In an effort to better understand how specific signaling pathways contribute to the global pattern of gene expression in Gsk-3α / ; Gsk-3β / ESCs, we compared the gene expression profiles in Gsk-3α / ; Gsk-3β / ESCs to mouse ESCs in which either Wnt/β-catenin signaling or phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling are constitutively active. Our results show that Wnt signaling has a greater effect on up-regulated genes in the Gsk-3α / ; Gsk-3β / ESCs, whereas PI3K-dependent insulin signaling is more responsible for the down-regulation of genes in the same cells. These data show the importance of Gsk-3 activity on gene expression in mouse ESCs, and that these effects are due to the combined effects of multiple signaling pathways.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In silico prediction of protein-protein interactions in human macrophages

          Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.

            Glycogen synthase kinase-3 (GSK3) is implicated in the regulation of several physiological processes, including the control of glycogen and protein synthesis by insulin, modulation of the transcription factors AP-1 and CREB, the specification of cell fate in Drosophila and dorsoventral patterning in Xenopus embryos. GSK3 is inhibited by serine phosphorylation in response to insulin or growth factors and in vitro by either MAP kinase-activated protein (MAPKAP) kinase-1 (also known as p90rsk) or p70 ribosomal S6 kinase (p70S6k). Here we show, however, that agents which prevent the activation of both MAPKAP kinase-1 and p70S6k by insulin in vivo do not block the phosphorylation and inhibition of GSK3. Another insulin-stimulated protein kinase inactivates GSK3 under these conditions, and we demonstrate that it is the product of the proto-oncogene protein kinase B (PKB, also known as Akt/RAC). Like the inhibition of GSK3 (refs 10, 14), the activation of PKB is prevented by inhibitors of phosphatidylinositol (PI) 3-kinase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway

              Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2 . Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/176528
                URI : http://frontiersin.org/people/u/140978
                URI : http://frontiersin.org/people/u/166419
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                27 June 2014
                13 August 2014
                2014
                : 5
                : 133
                Affiliations
                [1] 1Department of Integrative Biology, University of Colorado Denver , Denver, CO, USA
                [2] 2Center for Human and Molecular Genetics, Research Institute at Nationwide Children’s Hospital , Columbus, OH, USA
                [3] 3Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University , Hamilton, ON, Canada
                Author notes

                Edited by: Marc Lee Goalstone, University of Colorado Denver, USA

                Reviewed by: Kazunori Sango, Tokyo Metropolitan Institute of Medical Science, Japan; Zhong Q Wang, Pennington Biomedical Research Center, USA

                *Correspondence: Christopher J. Phiel, Department of Integrative Biology, University of Colorado Denver, Campus Box 171, P.O. Box 173364, Denver, CO 80217-3364, USA e-mail: christopher.phiel@ 123456ucdenver.edu

                Present address: Anthony D’Ippolito, Duke Institute for Genome Sciences & Policy, Duke University, Durham, NC, USA

                This article was submitted to Diabetes, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2014.00133
                4131280
                25165462
                73b79f15-c9fe-4583-bee3-3d696db3ed7c
                Copyright © 2014 Bartman, Egelston, Kattula, Zeidner, D’Ippolito, Doble and Phiel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 June 2014
                : 28 July 2014
                Page count
                Figures: 5, Tables: 4, Equations: 0, References: 63, Pages: 12, Words: 8608
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                embryonic stem cells,glycogen synthase kinase-3,wnt,phosphatidylinositol 3-kinase,microarray,quantitative pcr,signal transduction,gene expression

                Comments

                Comment on this article