14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Throughput Screening Data Interpretation in the Context of In Vivo Transcriptomic Responses to Oral Cr(VI) Exposure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The toxicity of hexavalent chromium [Cr(VI)] in drinking water has been studied extensively, and available in vivo and in vitro studies provide a robust dataset for application of advanced toxicological tools to inform the mode of action (MOA). This study aimed to contribute to the understanding of Cr(VI) MOA by evaluating high-throughput screening (HTS) data and other in vitro data relevant to Cr(VI), and comparing these findings to robust in vivo data, including transcriptomic profiles in target tissues. Evaluation of Tox21 HTS data for Cr(VI) identified 11 active assay endpoints relevant to the Ten Key Characteristics of Carcinogens (TKCCs) that have been proposed by other investigators. Four of these endpoints were related to TP53 (tumor protein 53) activation mapping to genotoxicity (KCC#2), and four were related to cell death/proliferation (KCC#10). HTS results were consistent with other in vitro data from the Comparative Toxicogenomics Database. In vitro responses were compared to in vivo transcriptomic responses in the most sensitive target tissue, the duodenum, of mice exposed to ≤ 180 ppm Cr(VI) for 7 and 90 days. Pathways that were altered both in vitro and in vivo included those relevant to cell death/proliferation. In contrast, pathways relevant to p53/DNA damage were identified in vitro but not in vivo. Benchmark dose modeling and phenotypic anchoring of in vivo transcriptomic responses strengthened the finding that Cr(VI) causes cell stress/injury followed by proliferation in the mouse duodenum at high doses. These findings contribute to the body of evidence supporting a non-mutagenic MOA for Cr(VI)-induced intestinal cancer.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Physiology and pathophysiology of matrix metalloproteases

          Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn2+ ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the ‘MMP nomenclature’ and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology

            The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Comparative Toxicogenomics Database's 10th year anniversary: update 2015

              Ten years ago, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) was developed out of a need to formalize, harmonize and centralize the information on numerous genes and proteins responding to environmental toxic agents across diverse species. CTD's initial approach was to facilitate comparisons of nucleotide and protein sequences of toxicologically significant genes by curating these sequences and electronically annotating them with chemical terms from their associated references. Since then, however, CTD has vastly expanded its scope to robustly represent a triad of chemical–gene, chemical–disease and gene–disease interactions that are manually curated from the scientific literature by professional biocurators using controlled vocabularies, ontologies and structured notation. Today, CTD includes 24 million toxicogenomic connections relating chemicals/drugs, genes/proteins, diseases, taxa, phenotypes, Gene Ontology annotations, pathways and interaction modules. In this 10th year anniversary update, we outline the evolution of CTD, including our increased data content, new ‘Pathway View’ visualization tool, enhanced curation practices, pilot chemical–phenotype results and impending exposure data set. The prototype database originally described in our first report has transformed into a sophisticated resource used actively today to help scientists develop and test hypotheses about the etiologies of environmentally influenced diseases.
                Bookmark

                Author and article information

                Journal
                Toxicol Sci
                Toxicol. Sci
                toxsci
                Toxicological Sciences
                Oxford University Press
                1096-6080
                1096-0929
                July 2017
                02 May 2017
                02 May 2017
                : 158
                : 1
                : 199-212
                Affiliations
                [* ]ToxStrategies Inc, Austin, Texas 78759
                []Department of Environmental Sciences and Engineering, Gillings School of Global Public Health
                []Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516
                [§ ]ToxStrategies Inc, Mission Viejo, California 92692;
                []ToxStrategies Inc, Houston, Texas 77494
                Author notes
                [1 ]To whom correspondence should be addressed at ToxStrategies, Inc., 23123 Cinco Ranch Blvd., Suite 220, Katy, TX 77494. Fax: (832) 218-2756. E-mail: cthompson@ 123456toxstrategies.com .
                Article
                kfx085
                10.1093/toxsci/kfx085
                5837509
                28472532
                40b43945-5b25-49ad-8234-6e979734360c
                © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Chromium (IV) Exposure and Transcriptomic Screening

                Pharmacology & Pharmaceutical medicine
                dose–response modeling,hexavalent chromium,high-throughput screening,mode of action,transcriptomics,risk assessment

                Comments

                Comment on this article