10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation of Terpenoid-Invasomes with Selective Activity against S. aureus and Characterization by Cryo Transmission Electron Microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Terpenoids are natural plant-derived products that are applied to treat a broad range of human diseases, such as airway infections and inflammation. However, pharmaceutical applications of terpenoids against bacterial infection remain challenging due to their poor water solubility. Here, we produce invasomes encapsulating thymol, menthol, camphor and 1,8-cineol, characterize them via cryo transmission electron microscopy and assess their bactericidal properties. While control- and cineol-invasomes are similarly distributed between unilamellar and bilamellar vesicles, a shift towards unilamellar invasomes is observable after encapsulation of thymol, menthol or camphor. Thymol- and camphor-invasomes show a size reduction, whereas menthol-invasomes are enlarged and cineol-invasomes remain unchanged compared to control. While thymol-invasomes lead to the strongest growth inhibition of S. aureus, camphor- or cineol-invasomes mediate cell death and S. aureus growth is not affected by menthol-invasomes. Flow cytometric analysis validate that invasomes comprising thymol are highly bactericidal to S. aureus. Notably, treatment with thymol-invasomes does not affect survival of Gram-negative E. coli. In summary, we successfully produce terpenoid-invasomes and demonstrate that particularly thymol-invasomes show a strong selective activity against Gram-positive bacteria. Our findings provide a promising approach to increase the bioavailability of terpenoid-based drugs and may be directly applicable for treating severe bacterial infections such as methicillin-resistant S. aureus.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          DLS and zeta potential - What they are and what they are not?

          Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of antibacterial action of three monoterpenes.

            In the present paper, we report the antimicrobial efficacy of three monoterpenes [linalyl acetate, (+)menthol, and thymol] against the gram-positive bacterium Staphylococcus aureus and the gram-negative bacterium Escherichia coli. For a better understanding of their mechanisms of action, the capability of these three monoterpenes to damage biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein from unilamellar vesicles with different lipidic compositions (phosphatidylcholine, phosphatidylcholine/phosphatidylserine [9:1], phosphatidylcholine/stearylamine [9:1], and phosphatidylglycerol/cardiolipin [9:1]). Furthermore, the interaction of the terpenes tested with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry. Finally, the results were related to the relative lipophilicity and water solubility of the compounds examined. Taken together, our findings lead us to speculate that the antimicrobial effect of (+)menthol, thymol, and linalyl acetate may result, at least partially, from a perturbation of the lipid fraction of microorganism plasma membrane, resulting in alterations of membrane permeability and in leakage of intracellular materials. Besides being related to physicochemical characteristics of the drugs (such as lipophilicity and water solubility), this effect seems to be dependent on lipid composition and net surface charge of microbial membranes. Furthermore, the drugs might cross the cell membranes, penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms.

              The aim of this study was to evaluate the effect of oregano essential oil, carvacrol and thymol on biofilm-grown Staphylococcus aureus and Staphylococcus epidermidis strains, as well as the effects of the oils on biofilm formation. For most of the S. aureus (n=6) and S. epidermidis (n=6) strains tested, the biofilm inhibitory concentration (0.125-0.500 %, v/v, for oregano, and 0.031-0.125 %, v/v, for carvacrol and thymol) and biofilm eradication concentration (0.25-1.0 %, v/v, for oregano and 0.125-0.500 %, v/v, for carvacrol and thymol) values were twofold or fourfold greater than the concentration required to inhibit planktonic growth. Subinhibitory concentrations of the oils attenuated biofilm formation of S. aureus and S. epidermidis strains on polystyrene microtitre plates.
                Bookmark

                Author and article information

                Journal
                Biomedicines
                Biomedicines
                biomedicines
                Biomedicines
                MDPI
                2227-9059
                01 May 2020
                May 2020
                : 8
                : 5
                : 105
                Affiliations
                [1 ]Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; b.kaltschmidt@ 123456uni-bielefeld.de (B.P.K.); ennen@ 123456physik.uni-bielefeld.de (I.E.)
                [2 ]Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; johannes.greiner@ 123456uni-bielefeld.de (J.F.W.G.); barbara.kaltschmidt@ 123456uni-bielefeld.de (B.K.); c.kaltschmidt@ 123456uni-bielefeld.de (C.K.)
                [3 ]Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany; robin.dietsch@ 123456fh-bielefeld.de (R.D.); anant.patel@ 123456fh-bielefeld.de (A.P.)
                [4 ]Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
                Author notes
                [* ]Correspondence: huetten@ 123456physik.uni-bielefeld.de ; Tel.: +49-521-106-5418
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-0524-662X
                https://orcid.org/0000-0003-1771-407X
                https://orcid.org/0000-0002-1686-8387
                Article
                biomedicines-08-00105
                10.3390/biomedicines8050105
                7277086
                32369920
                736c86fb-d967-4a2a-aa87-c164f0fb835c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 April 2020
                : 30 April 2020
                Categories
                Article

                terpenoids,invasomes,thymol,menthol,camphor,cineol,s. aureus,e. coli,bactericidal

                Comments

                Comment on this article