0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      May carriers at nanoscale improve the Endodontic’s future?

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Folding DNA to create nanoscale shapes and patterns.

          'Bottom-up fabrication', which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by 'top-down' methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide 'staple strands' to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chitosan as antimicrobial agent: applications and mode of action.

            Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymersomes for drug delivery: design, formation and characterization.

              In the last past dozen years, polymersomes (Ps) have attracted tremendous attention as versatile carriers because of their colloidal stability, tunable membrane properties and ability in encapsulating or integrating a broad range of drugs and molecules. Relatively long blood circulation times of Ps can be accomplished when block copolymers with a poly(ethylene glycol) (PEG) are used for the formation of Ps. A number of Ps has been developed for new possibilities and applications in drug delivery, medical imaging, electronics and nanoreactors. In particular, Ps prepared by using biodegradable and/or stimuli-sensitive block copolymers that are responsive to various internal or external stimuli are of great interest for such applications. In this review, recent advances of Ps as drug delivery systems are discussed. Critical factors that influence the formation of Ps are also addressed. The review describes preparative methods and characterization techniques for Ps. Moreover, protein and cell interactions with Ps, in vivo circulation kinetics and biodistribution of Ps are addressed.
                Bookmark

                Author and article information

                Journal
                Advanced Drug Delivery Reviews
                Advanced Drug Delivery Reviews
                Elsevier BV
                0169409X
                April 2023
                April 2023
                : 195
                : 114731
                Article
                10.1016/j.addr.2023.114731
                36787865
                6db7ca86-3203-4bae-8791-250a4445938e
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article