There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Heart failure (HF) with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. Phenotyping patients into pathophysiologically homogeneous groups may enable better targeting of treatment. Obesity is common in HFpEF and has many cardiovascular effects, suggesting that it may be a viable candidate for phenotyping. We compared cardiovascular structure, function, and reserve capacity in subjects with obese HFpEF, those with nonobese HFpEF, and control subjects.
Heart failure (HF) with preserved ejection fraction (EF; HFpEF) accounts for 50% of HF cases, and its prevalence relative to HF with reduced EF continues to rise. In contrast to HF with reduced EF, large trials testing neurohumoral inhibition in HFpEF failed to reach a positive outcome. This failure was recently attributed to distinct systemic and myocardial signaling in HFpEF and to diversity of HFpEF phenotypes. In this review, an HFpEF treatment strategy is proposed that addresses HFpEF-specific signaling and phenotypic diversity. In HFpEF, extracardiac comorbidities such as metabolic risk, arterial hypertension, and renal insufficiency drive left ventricular remodeling and dysfunction through systemic inflammation and coronary microvascular endothelial dysfunction. The latter affects left ventricular diastolic dysfunction through macrophage infiltration, resulting in interstitial fibrosis, and through altered paracrine signaling to cardiomyocytes, which become hypertrophied and stiff because of low nitric oxide and cyclic guanosine monophosphate. Systemic inflammation also affects other organs such as lungs, skeletal muscle, and kidneys, leading, respectively, to pulmonary hypertension, muscle weakness, and sodium retention. Individual steps of these signaling cascades can be targeted by specific interventions: metabolic risk by caloric restriction, systemic inflammation by statins, pulmonary hypertension by phosphodiesterase 5 inhibitors, muscle weakness by exercise training, sodium retention by diuretics and monitoring devices, myocardial nitric oxide bioavailability by inorganic nitrate-nitrite, myocardial cyclic guanosine monophosphate content by neprilysin or phosphodiesterase 9 inhibition, and myocardial fibrosis by spironolactone. Because of phenotypic diversity in HFpEF, personalized therapeutic strategies are proposed, which are configured in a matrix with HFpEF presentations in the abscissa and HFpEF predispositions in the ordinate.
Whether prevalence and mortality of patients with heart failure with preserved or mid-range (40-49%) ejection fraction (HFpEF and HFmREF) are similar to those of heart failure with reduced ejection fraction (HFrEF), as reported in some epidemiologic studies, remains highly controversial. We determined and compared characteristics and outcomes for patients with HFpEF, HFmREF, and HFrEF in a prospective, international, multi-ethnic population.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.