19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          hTERT gene plays an important role in melanoma, although the specific mechanism involved is unclear. The aim of this study was to screen and identify the relative miRNAs with the regulation of hTERT in melanoma.

          Materials and methods

          Quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to detect hTERT mRNA and protein expression in 36 formalin-fixed paraffin-embedded melanoma tissues and 36 age- and sex-matched pigmented nevi cases, respectively. Bioinformatics analysis and custom miRNA polymerase chain reaction array were determined for predicting, screening and verifying miRNAs with the regulation of the hTERT gene. To investigate the biological functions, miRNAs mimics or inhibitors were transfected into melanoma A375 cells. The relative expression of miR-497-5p, miR-195-5p, miR-455-3p and hTERT mRNA was determined by q-PCR. The protein expression of hTERT was detected by Western blot. 3-(4,5-Dimethylthiazolyl-2-yl)-2,5-biphenyl tetrazolium bromide and flow cytometry were employed to detect cell proliferation ability, cell apoptosis and cell cycle. Transwell and wound healing assays were used to observe cell invasion and migration abilities. A direct target gene of miRNAs was analyzed by a dual luciferase reporter activity assay.

          Results

          MiR-497-5p, miR-195-5p, miR-455-3p were significantly downregulated, while hTERT was upregulated in melanoma tissues. hTERT expression level was inversely correlated with miR-497-5p, miR-195-5p and miR-455-3p. Overexpression of miR-497-5p, miR-195-5p and miR-455-3p inhibited A375 cell proliferation, migration and invasion, arrested the cell cycle, induced cell apoptosis and decreased hTERT expression at both mRNA and protein levels. Suppression of miR-497-5p, miR-195-5p and miR-455-3p partially reversed the inhibitory effects. Finally, hTERT was identified as a direct target of miR-497-5p, miR-195-5p and miR-455-3p.

          Conclusions

          MiR-497-5p, miR-195-5p and miR-455-3p act as tumor suppressors by targeting hTERT in melanoma A375 cells. Therefore, miR-497-5p, miR-195-5p and miR-455-3p could be potential targeted therapeutic choice for melanoma.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual

          Answer questions and earn CME/CNE To update the melanoma staging system of the American Joint Committee on Cancer (AJCC) a large database was assembled comprising >46,000 patients from 10 centers worldwide with stages I, II, and III melanoma diagnosed since 1998. Based on analyses of this new database, the existing seventh edition AJCC stage IV database, and contemporary clinical trial data, the AJCC Melanoma Expert Panel introduced several important changes to the Tumor, Nodes, Metastasis (TNM) classification and stage grouping criteria. Key changes in the eighth edition AJCC Cancer Staging Manual include: 1) tumor thickness measurements to be recorded to the nearest 0.1 mm, not 0.01 mm; 2) definitions of T1a and T1b are revised (T1a, <0.8 mm without ulceration; T1b, 0.8-1.0 mm with or without ulceration or <0.8 mm with ulceration), with mitotic rate no longer a T category criterion; 3) pathological (but not clinical) stage IA is revised to include T1b N0 M0 (formerly pathologic stage IB); 4) the N category descriptors "microscopic" and "macroscopic" for regional node metastasis are redefined as "clinically occult" and "clinically apparent"; 5) prognostic stage III groupings are based on N category criteria and T category criteria (ie, primary tumor thickness and ulceration) and increased from 3 to 4 subgroups (stages IIIA-IIID); 6) definitions of N subcategories are revised, with the presence of microsatellites, satellites, or in-transit metastases now categorized as N1c, N2c, or N3c based on the number of tumor-involved regional lymph nodes, if any; 7) descriptors are added to each M1 subcategory designation for lactate dehydrogenase (LDH) level (LDH elevation no longer upstages to M1c); and 8) a new M1d designation is added for central nervous system metastases. This evidence-based revision of the AJCC melanoma staging system will guide patient treatment, provide better prognostic estimates, and refine stratification of patients entering clinical trials. CA Cancer J Clin 2017;67:472-492. © 2017 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers.

            Telomerase activation is a critical step for human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. Transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is the major mechanism for cancer-specific activation of telomerase, and a number of factors have been identified to directly or indirectly regulate the hTERT promoter, including cellular transcriptional activators (c-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as the repressors, most of which comprise tumor suppressor gene products, such as p53, WT1, and Menin. Nevertheless, none of them can clearly account for the cancer specificity of hTERT expression. The chromatin structure via the DNA methylation or modulation of nucleosome histones has recently been suggested to be important for regulation of the hTERT promoter. DNA unmethylation or histone methylation around the transcription start site of the hTERT promoter triggers the recruitment of histone acetyltransferase (HAT) activity, allowing hTERT transcription. These facts prompted us to apply these regulatory mechanisms to cancer diagnostics and therapeutics. Telomerase-specific replicative adenovirus (Telomelysin, OBP-301), in which E1A and E1B genes are driven by the hTERT promoter, has been developed as an oncolytic virus that replicates specifically in cancer cells and causes cell death via viral toxicity. Direct administration of Telomelysin was proved to effectively eradicate solid tumors in vivo, without apparent adverse effects. Clinical trials using Telomelysin for cancer patients with progressive stages are currently ongoing. Furthermore, we incorporated green fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401). Administration of TelomeScan into the primary tumor enabled the visualization of cancer cells under the cooled charged-coupled device (CCD) camera, not only in primary tumors but also the metastatic foci. This technology can be applied to intraoperative imaging of metastatic lymphnodes. Thus, we found novel tools for cancer diagnostics and therapeutics by utilizing the hTERT promoter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypo Adenosine-to-Inosine miR-455-5p Editing Promotes Melanoma Growth and Metastasis

              Although recent studies have shown that adenosine-to-inosine (A-to-I) RNA editing occurs in microRNAs, its effects on tumor growth and metastasis are not well understood. We present evidence of CREB-mediated low expression of ADAR1 in metastatic melanoma cell lines and tumor specimens. Re-expression of ADAR1 resulted in the suppression of melanoma growth and metastasis in vivo. Consequently, we identified 3 miRs undergoing A-to-I editing in the low-metastatic melanoma but not in highly metastatic cell lines. One of these miRs, miR-455-5p has two A-to-I RNA editing sites. The biological function of edited miR-455-5p is different from the unedited form as it recognizes different set of genes. Indeed, w.t. miR-455-5p promotes melanoma metastasis via inhibition of the tumor suppressor gene CPEB1. Moreover, w.t. miR-455 enhances melanoma growth and metastasis in vivo while the edited form inhibits these features. These results demonstrate a previously unrecognized role of RNA editing in melanoma progression.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                Cancer Management and Research
                Cancer Management and Research
                Dove Medical Press
                1179-1322
                2018
                03 May 2018
                : 10
                : 989-1003
                Affiliations
                [1 ]Xinjiang Medical University, Urumqi, China
                [2 ]Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
                [3 ]Department of Pathology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
                Author notes
                Correspondence: Xiao-Jing Kang, Department of Dermatology and Venereology, People’s Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan Region, 830001 Urumqi, Xinjiang, China, Tel +86 139 9992 7999, Fax +86 991 856 1752, Email drkangxj666@ 123456163.com
                Article
                cmar-10-989
                10.2147/CMAR.S163335
                5937487
                29760567
                72985605-1dd8-4fb6-90c9-9380e44916b1
                © 2018 Chai et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                melanoma,mir-497-5p,mir-195-5p,mir-455-3p,htert
                Oncology & Radiotherapy
                melanoma, mir-497-5p, mir-195-5p, mir-455-3p, htert

                Comments

                Comment on this article