15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Ultralight, ultrastiff mechanical metamaterials.

          The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale unit cells with high structural connectivity and nanoscale features, whose structural members are designed to carry loads in tension or compression. Production of these microlattices, with polymers, metals, or ceramics as constituent materials, is made possible by projection microstereolithography (an additive micromanufacturing technique) combined with nanoscale coating and postprocessing. We found that these materials exhibit ultrastiff properties across more than three orders of magnitude in density, regardless of the constituent material.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultralight metallic microlattices.

            Ultralight (<10 milligrams per cubic centimeter) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. We present ultralight materials based on periodic hollow-tube microlattices. These materials are fabricated by starting with a template formed by self-propagating photopolymer waveguide prototyping, coating the template by electroless nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              3D printing of interdigitated Li-ion microbattery architectures.

              3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 08 2015
                January 08 2015
                : 347
                : 6218
                : 154-159
                Article
                10.1126/science.1260960
                25574018
                7228f140-4e69-4fbc-be00-a51baf619fc9
                © 2015

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article