75
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

          Author Summary

          The small roundworm Caenorhabditis elegans is an important model system for many areas of biology, but little is known about its natural ecology. We have identified an intracellular parasite from C. elegans in its natural habitat isolated near Paris and have named it Nematocida parisii, or nematode-killer from Paris. N. parisii defines a new genus and species of microsporidia. Microsporidia are ubiquitous eukaryotic pathogens that are thought to be highly reduced fungi and are emerging pathogens of humans. The microsporidian N. parisii invades and resides in C. elegans intestinal cells where it goes through a multistep life cycle and eventually escapes out of intestinal cells, leaving holes in the terminal web, an important cellular structure. We have found N. parisii and a related Nematocida species in several wild-caught roundworms, indicating that microsporidian infections may be relatively common for C. elegans in the wild. The C. elegans/N. parisii interaction provides a valuable system in which to study microsporidian infections in a whole animal, and a convenient and inexpensive system in which to screen for anti-microsporidian drugs.

          Abstract

          A newly identified intracellular pathogen of wild-caught Caenorhabditis elegans represents a new microsporidian species that will provide a model to study this class of pathogen in humans.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple sequence alignment with the Clustal series of programs.

            R Chenna (2003)
            The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics.

              A key element to a successful Markov chain Monte Carlo (MCMC) inference is the programming and run performance of the Markov chain. However, the explicit use of quality assessments of the MCMC simulations-convergence diagnostics-in phylogenetics is still uncommon. Here, we present a simple tool that uses the output from MCMC simulations and visualizes a number of properties of primary interest in a Bayesian phylogenetic analysis, such as convergence rates of posterior split probabilities and branch lengths. Graphical exploration of the output from phylogenetic MCMC simulations gives intuitive and often crucial information on the success and reliability of the analysis. The tool presented here complements convergence diagnostics already available in other software packages primarily designed for other applications of MCMC. Importantly, the common practice of using trace-plots of a single parameter or summary statistic, such as the likelihood score of sampled trees, can be misleading for assessing the success of a phylogenetic MCMC simulation. The program is available as source under the GNU General Public License and as a web application at http://ceb.scs.fsu.edu/awty.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2008
                9 December 2008
                : 6
                : 12
                : e309
                Affiliations
                [1 ] Department of Genetics, Harvard Medical School, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
                [2 ] Institut Jacques Monod, Centre National de la Recherche Scientifique, Universities Paris 6 and 7, Paris, France
                [3 ] Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
                University of Vermont, United States Of America
                Author notes
                * To whom correspondence should be addressed. E-mail: etroemel@ 123456ucsd.edu
                Article
                08-PLBI-RA-3918R2 plbi-06-12-06
                10.1371/journal.pbio.0060309
                2596862
                19071962
                7168ddd5-a0b5-4ab3-b58a-586b4f11013c
                Copyright: © 2008 Troemel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 September 2008
                : 31 October 2008
                Page count
                Pages: 17
                Categories
                Research Article
                Cell Biology
                Ecology
                Immunology
                Infectious Diseases
                Custom metadata
                Troemel ER, Félix MA, Whiteman NK, Barrière N, Ausubel FM (2008) Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 6(12): e309. doi: 10.1371/journal.pbio.0060309

                Life sciences
                Life sciences

                Comments

                Comment on this article