8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Airway macrophages as the guardians of tissue repair in the lung

      1 , 1 , 1
      Immunology & Cell Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

          The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alveolar macrophages: plasticity in a tissue-specific context.

            Alveolar macrophages exist in a unique microenvironment and, despite historical evidence showing that they are in close contact with the respiratory epithelium, have until recently been investigated in isolation. The microenvironment of the airway lumen has a considerable influence on many aspects of alveolar macrophage phenotype, function and turnover. As the lungs adapt to environmental challenges, so too do alveolar macrophages adapt to accommodate the ever-changing needs of the tissue. In this Review, we discuss the unique characteristics of alveolar macrophages, the mechanisms that drive their adaptation and the direct and indirect influences of epithelial cells on them. We also highlight how airway luminal macrophages function as sentinels of a healthy state and how they do not respond in a pro-inflammatory manner to antigens that do not disrupt lung structure. The unique tissue location and function of alveolar macrophages distinguish them from other macrophage populations and suggest that it is important to classify macrophages according to the site that they occupy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus

                Bookmark

                Author and article information

                Journal
                Immunology & Cell Biology
                Immunol Cell Biol
                Wiley
                0818-9641
                1440-1711
                March 19 2019
                March 2019
                February 15 2019
                March 2019
                : 97
                : 3
                : 246-257
                Affiliations
                [1 ]Inflammation, Repair & Development National Heart & Lung Institute Imperial College London London UK
                Article
                10.1111/imcb.12235
                30768869
                70fe0f9a-1cba-4bd3-8e10-dc7169549b40
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article