Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P3">Poor trans-ancestry portability of polygenic risk scores is a consequence of Eurocentric genetic studies and limited knowledge of shared causal variants. Leveraging regulatory annotations may improve portability by prioritizing functional over tagging variants. We constructed a resource of 707 cell-type-specific IMPACT regulatory annotations by aggregating 5,345 epigenetic datasets to predict binding patterns of 142 transcription factors across 245 cell types. We then partitioned the common SNP heritability of 111 genome-wide association study summary statistics of European (average <i>n</i> ≈ 189,000) and East Asian (average <i>n</i> ≈ 157,000) origin. IMPACT annotations captured consistent SNP heritability between populations, suggesting prioritization of shared functional variants. Variant prioritization using IMPACT resulted in increased trans-ancestry portability of polygenic risk scores from Europeans to East Asians across all 21 phenotypes analyzed (49.9% mean relative increase in <i>R</i> <sup>2</sup>). Our study identifies a crucial role for functional annotations such as IMPACT to improve the trans-ancestry portability of genetic data. </p>

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A global reference for human genetic variation

            The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.

              Genome-scale studies have revealed extensive, cell type-specific colocalization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here, we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling, followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                December 2020
                November 30 2020
                December 2020
                : 52
                : 12
                : 1346-1354
                Article
                10.1038/s41588-020-00740-8
                8049522
                33257898
                70a3b43f-2c84-4eac-8930-97d4858059bb
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content2,372

                Cited by78

                Most referenced authors2,701