0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Machine Learning Approach to Predict Building Thermal Load Considering Feature Variable Dimensions: An Office Building Case Study

      , , , , ,
      Buildings
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An accurate and fast building load prediction model is critically important for guiding building energy system design, optimizing operational parameters, and balancing a power grid between energy supply and demand. A physics-based simulation tool is traditionally used to provide the building load demand; however, it is constrained by its complex model development process and requirement for engineering judgments. Machine learning algorithms (i.e., data-driven models) based on big data can bridge this gap. In this study, we used the massive energy data generated by a physics-based tool (EnergyPlus) to develop three data-driven models (i.e., LightGBM, random forest (RF), and long-short term memory (LSTM)) and compared their prediction performances. The physics-based models were developed using office prototype building models as baselines, and ranges were provided for selected key input parameters. Three different input feature dimensions (i.e., six-, nine-, and fifteen-input feature selections) were investigated, aiming to meet different demands for practical applications. We found that LightGBM significantly outperforms the RF and LSTM algorithms, not only with respect to prediction accuracy but also in regard to computation cost. The best prediction results show that the coefficient of variation of the root mean squared error (CVRMSE), squared correction coefficient (R2), and computation time are 5.25%, 0.9959, and 7.0 s for LightGBM, respectively, evidently better than the values for the algorithms based on RF (18.54%, 0.9482, and 44.6 s) and LSTM (22.06%, 0.9267, and 758.8 s). The findings demonstrate that a data-driven model is able to avoid the process of establishing a complicated physics-based model for predicting a building’s thermal load, with similar accuracy to that of a physics-based simulation tool.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              State of the art in building modelling and energy performances prediction: A review

                Bookmark

                Author and article information

                Contributors
                Journal
                Buildings
                Buildings
                MDPI AG
                2075-5309
                February 2023
                January 20 2023
                : 13
                : 2
                : 312
                Article
                10.3390/buildings13020312
                6fbe6398-d1b1-4e44-bcce-b633be25e744
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article