48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The existing studies on drivers’ injury severity include numerous statistical models that assess potential factors affecting the level of injury. These models should address specific concerns tailored to different crash characteristics. For rear-end crashes, potential correlation in injury severity may present between the two drivers involved in the same crash. Moreover, there may exist unobserved heterogeneity considering parameter effects, which may vary across both crashes and individuals. To address these concerns, a random parameters bivariate ordered probit model has been developed to examine factors affecting injury sustained by two drivers involved in the same rear-end crash between passenger cars. Taking both the within-crash correlation and unobserved heterogeneity into consideration, the proposed model outperforms the two separate ordered probit models with fixed parameters. The value of the correlation parameter demonstrates that there indeed exists significant correlation between two drivers’ injuries. Driver age, gender, vehicle, airbag or seat belt use, traffic flow, etc., are found to affect injury severity for both the two drivers. Some differences can also be found between the two drivers, such as the effect of light condition, crash season, crash position, etc. The approach utilized provides a possible use for dealing with similar injury severity analysis in future work.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Analytic methods in accident research: Methodological frontier and future directions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives

            Reducing the severity of injuries resulting from motor-vehicle crashes has long been a primary emphasis of highway agencies and motor-vehicle manufacturers. While progress can be simply measured by the reduction in injury levels over time, insights into the effectiveness of injury-reduction technologies, policies, and regulations require a more detailed empirical assessment of the complex interactions that vehicle, roadway, and human factors have on resulting crash-injury severities. Over the years, researchers have used a wide range of methodological tools to assess the impact of such factors on disaggregate-level injury-severity data, and recent methodological advances have enabled the development of sophisticated models capable of more precisely determining the influence of these factors. This paper summarizes the evolution of research and current thinking as it relates to the statistical analysis of motor-vehicle injury severities, and provides a discussion of future methodological directions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injury severities of truck drivers in single- and multi-vehicle accidents on rural highways.

              In adverse driving conditions, such as inclement weather and/or complex terrain, trucks are often involved in single-vehicle (SV) accidents in addition to multi-vehicle (MV) accidents. Ten-year accident data involving trucks on rural highway from the Highway Safety Information System (HSIS) is studied to investigate the difference in driver-injury severity between SV and MV accidents by using mixed logit models. Injury severity from SV and MV accidents involving trucks on rural highways is modeled separately and their respective critical risk factors such as driver, vehicle, temporal, roadway, environmental and accident characteristics are evaluated. It is found that there exists substantial difference between the impacts from a variety of variables on the driver-injury severity in MV and SV accidents. By conducting the injury severity study for MV and SV accidents involving trucks separately, some new or more comprehensive observations, which have not been covered in the existing studies can be made. Estimation findings indicate that the snow road surface and light traffic indicators will be better modeled as random parameters in SV and MV models respectively. As a result, the complex interactions of various variables and the nature of truck-driver injury are able to be disclosed in a better way. Based on the improved understanding on the injury severity of truck drivers from truck-involved accidents, it is expected that more rational and effective injury prevention strategy may be developed for truck drivers under different driving conditions in the future.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                23 July 2019
                July 2019
                : 16
                : 14
                : 2632
                Affiliations
                The Key Laboratory of Road and Traffic Engineering, Ministry of Education Tongji University, Shanghai 201804, China
                Author notes
                [* ]Correspondence: xiaoxiang.ma@ 123456tongji.edu.cn ; Tel.: +86-21-6598-3813
                Article
                ijerph-16-02632
                10.3390/ijerph16142632
                6678079
                31340600
                6f9c7531-8ad9-441e-b5a2-dd44801d135b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 June 2019
                : 22 July 2019
                Categories
                Article

                Public health
                injury severity,rear-end crash,random parameter bivariate ordered probit
                Public health
                injury severity, rear-end crash, random parameter bivariate ordered probit

                Comments

                Comment on this article