Herein we report a new ammoniation-based chemical modification strategy for synthesis of continuous and uniform metal-organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross-linked; therefore, the high-density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high-quality layers of representative Cu-BTC and ZIF-8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF-7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2 /CO2 and H2 /N2 .