1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Frequency Domain to Time Transient Methods for Halide Perovskite Solar Cells: The Connections of IMPS, IMVS, TPC, and TPV

      rapid-communication
      , , ,
      The Journal of Physical Chemistry Letters
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The correlation of different methods of measurement can become an important tool to identify the dominant physical elements that govern the electronic and ionic dynamics in perovskite solar cells. The diverse phenomena underlying the response of halide perovskite materials to different stimuli are reflected in time-domain measurements, where transients appear with time scales spanning orders of magnitude, from nanoseconds to hours. We discuss the connection between different frequency- and time-domain methods to probe the voltage and current response of halide perovskite solar cells to different small perturbations. To solve the frequency-to-time transformation, we start from models of the transfer function of intensity-modulated photocurrent spectroscopy (IMPS) and derive the associated impulse response function, the transient photocurrent (TPC), in response to a short light pulse. Similarly, we determine the transient photovoltage (TPV) starting from the intensity-modulated photovoltage spectroscopy (IMVS) transfer function. We also discuss the open-circuit voltage decays (OCVD). We first show the response of simple equivalent circuit models, and then we treat the full model for generation–diffusion–recombination of electrons that shows a spiraling loop in IMPS. This model gives rise to overshoots in the time domain.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

          Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.

            Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis

              Ion migration has been proposed as a possible cause of photovoltaic current–voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis.
                Bookmark

                Author and article information

                Journal
                J Phys Chem Lett
                J Phys Chem Lett
                jz
                jpclcd
                The Journal of Physical Chemistry Letters
                American Chemical Society
                1948-7185
                13 August 2021
                26 August 2021
                : 12
                : 33
                : 7964-7971
                Affiliations
                []Institute of Advanced Materials (INAM), Universitat Jaume I , 12006 Castelló, Spain
                []Department of Mathematics, Mechanics Division, University of Oslo , N-0851 Oslo, Norway
                Author notes
                Author information
                https://orcid.org/0000-0003-4987-4887
                https://orcid.org/0000-0003-0743-4904
                Article
                10.1021/acs.jpclett.1c02065
                8404195
                34388001
                6f14c532-7dab-4517-9d11-59401935a045
                © 2021 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 27 June 2021
                : 30 July 2021
                Funding
                Funded by: Ministerio de Ciencia y Innovación, doi NA;
                Award ID: PID2019-107348GB-100
                Categories
                Letter
                Custom metadata
                jz1c02065
                jz1c02065

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article