5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of bacterial undecaprenyl pyrophosphate synthase by small fungal molecules

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Antibiotic resistance in bacteria and its future for novel antibiotic development.

          Since the first introduction of the sulfa drugs and penicillin into clinical use, large numbers of antibiotics have been developed and hence contributed to human health. But extensive use of antibiotics has raised a serious public health problem due to multiantibiotic resistant bacterial pathogens that inevitably develop resistance to every new drug launched in the clinic. Consequently, there is a pressing need to develop new antibiotics to keep pace with bacterial resistance. Recent advances in microbial genomics and X-ray crystallography provide opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics respectively. To prevent and control infectious diseases caused by multiantibiotic resistant bacteria, we need to understand more about the molecular aspects of the pathogens' physiology and to pursue ways to prolong the life of precious antibiotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases.

            Bisphosphonate drugs (e.g., Fosamax and Zometa) are thought to act primarily by inhibiting farnesyl diphosphate synthase (FPPS), resulting in decreased prenylation of small GTPases. Here, we show that some bisphosphonates can also inhibit geranylgeranyl diphosphate synthase (GGPPS), as well as undecaprenyl diphosphate synthase (UPPS), a cis-prenyltransferase of interest as a target for antibacterial therapy. Our results on GGPPS (10 structures) show that there are three bisphosphonate-binding sites, consisting of FPP or isopentenyl diphosphate substrate-binding sites together with a GGPP product- or inhibitor-binding site. In UPPS, there are a total of four binding sites (in five structures). These results are of general interest because they provide the first structures of GGPPS- and UPPS-inhibitor complexes, potentially important drug targets, in addition to revealing a remarkably broad spectrum of binding modes not seen in FPPS inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and function of cis-prenyl chain elongating enzymes.

              All carbon skeletons of isoprenoids, whose chain lengths vary widely from geranyl diphosphate (C10) to natural rubber (C>10,000), are synthesized by sequential condensation of isopentenyl diphosphate with an allylic diphosphate through catalytic functions of a group of enzymes commonly called "prenyltransferases." Prenyltransferases are classified into two major groups, trans- or (E)-prenyltransferases and cis- or (Z)-prenyltransferases, according to the geometry of the prenyl chain units in the products. From the year 1987, many genes encoding trans-prenyltransferases were cloned and clearly characterized. In contrast, the structure and detailed mechanism of cis-prenyltransferase was completely unknown until the identification of a gene encoding the undecaprenyl diphosphate (UPP) synthase from Micrococcus luteus B-P 26 in 1998. Not only the primary but also the tertiary structure of the UPP synthase is quite different from that of the trans-prenyltransferases. Multiple alignment of the primary structures of cis-prenyltransferases identified from various organisms reveals five highly conserved regions. Site-directed mutagenesis of the conserved amino acid residues in UPP synthases based on the crystal structure has elucidated the basic catalytic mechanisms. Moreover, comparison of the structures of short-, medium-, and long-chain cis-prenyltransferases reveals important amino acid residues for product chain length determination, which enabled us to understand the regulation mechanism of the ultimate chain length among cis-prenyltransferases.
                Bookmark

                Author and article information

                Journal
                The Journal of Antibiotics
                J Antibiot
                Springer Nature America, Inc
                0021-8820
                1881-1469
                November 2016
                April 6 2016
                November 2016
                : 69
                : 11
                : 798-805
                Article
                10.1038/ja.2016.35
                6eccb331-b969-4b2b-a1d2-76cc7dec8a91
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article