9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dissipation-induced structural instability and chiral dynamics in a quantum gas

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Chirality by dissipation

          Quantum many-body systems can display exotic dynamics in the presence of dissipation. Dogra et al. studied such dynamics in a system consisting of an atomic Bose-Einstein condensate located in an optical cavity and exposed to a standing wave of laser light. Light scattering off the atomic cloud and into the cavity resulted in two distinct, spatially patterned collective modes for the atoms. When the researchers then introduced dissipation to couple the two modes, the system followed a directed circular path through phase space, rotating between the modes.

          Science , this issue p. [Related article:]1496

          Abstract

          Chiral dynamics emerge in an atomic Bose-Einstein condensate in an optical cavity in the presence of dissipation.

          Abstract

          Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. In this study, we observe a nonstationary state of chiral nature in a synthetic many-body system with independently controllable unitary and dissipative couplings. Our experiment is based on a spinor Bose gas interacting with an optical resonator. Orthogonal quadratures of the resonator field coherently couple the Bose-Einstein condensate to two different atomic spatial modes, whereas the dispersive effect of the resonator losses mediates a dissipative coupling between these modes. In a regime of dominant dissipative coupling, we observe the chiral evolution and relate it to a positional instability.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Quantum fluids of light

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dicke quantum phase transition with a superfluid gas in an optical cavity.

            A phase transition describes the sudden change of state of a physical system, such as melting or freezing. Quantum gases provide the opportunity to establish a direct link between experiments and generic models that capture the underlying physics. The Dicke model describes a collective matter-light interaction and has been predicted to show an intriguing quantum phase transition. Here we realize the Dicke quantum phase transition in an open system formed by a Bose-Einstein condensate coupled to an optical cavity, and observe the emergence of a self-organized supersolid phase. The phase transition is driven by infinitely long-range interactions between the condensed atoms, induced by two-photon processes involving the cavity mode and a pump field. We show that the phase transition is described by the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid phase is associated with a spontaneously broken spatial symmetry. The boundary of the phase transition is mapped out in quantitative agreement with the Dicke model. Our results should facilitate studies of quantum gases with long-range interactions and provide access to novel quantum phases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exceptional points in optics and photonics

              Exceptional points are branch point singularities in the parameter space of a system at which two or more eigenvalues, and their corresponding eigenvectors, coalesce and become degenerate. Such peculiar degeneracies are distinct features of non-Hermitian systems, which do not obey conservation laws because they exchange energy with the surrounding environment. Non-Hermiticity has been of great interest in recent years, particularly in connection with the quantum mechanical notion of parity-time symmetry, after the realization that Hamiltonians satisfying this special symmetry can exhibit entirely real spectra. These concepts have become of particular interest in photonics because optical gain and loss can be integrated and controlled with high resolution in nanoscale structures, realizing an ideal playground for non-Hermitian physics, parity-time symmetry, and exceptional points. As we control dissipation and amplification in a nanophotonic system, the emergence of exceptional point singularities dramatically alters their overall response, leading to a range of exotic optical functionalities associated with abrupt phase transitions in the eigenvalue spectrum. These concepts enable ultrasensitive measurements, superior manipulation of the modal content of multimode lasers, and adiabatic control of topological energy transfer for mode and polarization conversion. Non-Hermitian degeneracies have also been exploited in exotic laser systems, new nonlinear optics schemes, and exotic scattering features in open systems. Here we review the opportunities offered by exceptional point physics in photonics, discuss recent developments in theoretical and experimental research based on photonic exceptional points, and examine future opportunities in this area from basic science to applied technology.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                December 20 2019
                December 20 2019
                : 366
                : 6472
                : 1496-1499
                Affiliations
                [1 ]Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland.
                Article
                10.1126/science.aaw4465
                31857481
                6ebe111d-774c-4db2-90a8-2c620cbee3fb
                © 2019
                History

                Comments

                Comment on this article