7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catheters used for endovascular navigation in interventional procedures lack dexterity at the distal tip. Neurointerventionists, in particular, encounter challenges in up to 25% of aneurysm cases largely due to the inability to steer and navigate the tip of the microcatheters through tortuous vasculature to access aneurysms. We overcome this problem with submillimeter diameter, hydraulically actuated hyperelastic polymer devices at the distal tip of microcatheters to enable active steerability. Controlled by hand, the devices offer complete 3D orientation of the tip. Using saline as a working fluid, we demonstrate guidewire-free navigation, access, and coil deployment in vivo, offering safety, ease of use, and design flexibility absent in other approaches to endovascular intervention. We demonstrate the ability of our device to navigate through vessels and to deliver embolization coils to the cerebral vessels in a live porcine model. This indicates the potential for microhydraulic soft robotics to solve difficult access and treatment problems in endovascular intervention.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research

          Reproducible science requires transparent reporting. The ARRIVE guidelines (Animal Research: Reporting of In Vivo Experiments) were originally developed in 2010 to improve the reporting of animal research. They consist of a checklist of information to include in publications describing in vivo experiments to enable others to scrutinise the work adequately, evaluate its methodological rigour, and reproduce the methods and results. Despite considerable levels of endorsement by funders and journals over the years, adherence to the guidelines has been inconsistent, and the anticipated improvements in the quality of reporting in animal research publications have not been achieved. Here, we introduce ARRIVE 2.0. The guidelines have been updated and information reorganised to facilitate their use in practice. We used a Delphi exercise to prioritise and divide the items of the guidelines into 2 sets, the “ARRIVE Essential 10,” which constitutes the minimum requirement, and the “Recommended Set,” which describes the research context. This division facilitates improved reporting of animal research by supporting a stepwise approach to implementation. This helps journal editors and reviewers verify that the most important items are being reported in manuscripts. We have also developed the accompanying Explanation and Elaboration (E&E) document, which serves (1) to explain the rationale behind each item in the guidelines, (2) to clarify key concepts, and (3) to provide illustrative examples. We aim, through these changes, to help ensure that researchers, reviewers, and journal editors are better equipped to improve the rigour and transparency of the scientific process and thus reproducibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design, fabrication and control of soft robots.

            Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrated design and fabrication strategy for entirely soft, autonomous robots.

              Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science Robotics
                Sci. Robot.
                American Association for the Advancement of Science (AAAS)
                2470-9476
                August 18 2021
                August 18 2021
                August 18 2021
                August 18 2021
                : 6
                : 57
                : eabf0601
                Affiliations
                [1 ]Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.
                [2 ]School of Medicine, University of California San Diego, La Jolla, CA, USA.
                [3 ]Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA.
                [4 ]Melbourne Brain Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia.
                [5 ]Department of Radiology, University of California San Diego, La Jolla, CA, USA.
                [6 ]Department of Surgery, University of California San Diego, La Jolla, CA, USA.
                Article
                10.1126/scirobotics.abf0601
                34408094
                6e18bd1c-a2de-40fa-bc2e-7bbb685c27ed
                © 2021

                https://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article