23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anguillicola crassus impairs the silvering-related enhancements of the ROS defense capacity in swimbladder tissue of the European eel ( Anguilla anguilla)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a process called silvering, European eels prepare for their long-distance migration from European freshwater systems to the Sargasso Sea for reproduction. During this journey, eels perform extended diel vertical migrations, and the concomitant changes in hydrostatic pressure significantly affect the swimbladder, functioning as a buoyancy organ. As the swimbladder is primarily filled with oxygen, the tissue has to cope with extreme hyperoxic conditions, which typically are accompanied by the generation of reactive oxygen species (ROS) and oxidative stress. In addition, since the introduction of the parasitic nematode Anguillicola crassus in the early 1980s, swimbladder function of most of the European eels is impaired by the infection with this parasite. However, the exact pathways to detoxify ROS and how these pathways are affected by silvering or the infection are still unknown. In swimbladder and muscle tissue from uninfected and infected yellow, and from uninfected and infected silver eels, we measured the level of lipid peroxidation, which increases with ROS stress. To assess the capacity of the ROS defense systems, we analyzed the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione reductase (GR), and determined the concentration of the antioxidant glutathione (GSH + GSSG). In swimbladder tissue, we found increased concentrations of GSH + GSSG as well as higher activities of SOD, GPx and GR, suggesting that SOD and the glutathione cycle are important for ROS detoxification. Comparing swimbladder tissue of uninfected yellow with uninfected silver eels, the concentration of GSH + GSSG and the activity of SOD were higher after silvering, corresponding with lower levels of lipid peroxidation. Whereas in yellow eels the infection with A. crassus had no effect, in silver eels the capacity to cope with ROS was significantly impaired. In muscle tissue, silvering or the infection only affected the activity of SOD but in exactly the same way as in swimbladder tissue.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00360-016-0994-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Environmentally induced oxidative stress in aquatic animals.

          Reactive oxygen species (ROS) are an unenviable part of aerobic life. Their steady-state concentration is a balance between production and elimination providing certain steady-state ROS level. The dynamic equilibrium can be disturbed leading to enhanced ROS level and damage to cellular constituents which is called "oxidative stress". This review describes the general processes responsible for ROS generation in aquatic animals and critically analyses used markers for identification of oxidative stress. Changes in temperature, oxygen levels and salinity can cause the stress in natural and artificial conditions via induction of disbalance between ROS production and elimination. Human borne pollutants can also enhance ROS level in hydrobionts. The role of transition metal ions, such as copper, chromium, mercury and arsenic, and pesticides, namely insecticides, herbicides, and fungicides along with oil products in induction of oxidative stress is highlighted. Last years the research in biology of free radicals was refocused from only descriptive works to molecular mechanisms with particular interest to ones enhancing tolerance. The function of some transcription regulators (Keap1-Nrf2 and HIF-1α) in coordination of organisms' response to oxidative stress is discussed. The future directions in the field are related with more accurate description of oxidative stress, the identification of its general characteristics and mechanisms responsible for adaptation to the stress have been also discussed. The last part marks some perspectives in the study of oxidative stress in hydrobionts, which, in addition to classic use, became more and more popular to address general biological questions such as development, aging and pathologies. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.

            Increasing appreciation of the causative role of oxidative injury in many disease states places great importance on the reliable assessment of lipid peroxidation. Malondialdehyde (MDA) is one of several low-molecular-weight end products formed via the decomposition of certain primary and secondary lipid peroxidation products. At low pH and elevated temperature, MDA readily participates in nucleophilic addition reaction with 2-thiobarbituric acid (TBA), generating a red, fluorescent 1:2 MDA:TBA adduct. These facts, along with the availability of facile and sensitive methods to quantify MDA (as the free aldehyde or its TBA derivative), have led to the routine use of MDA determination and, particularly, the "TBA test" to detect and quantify lipid peroxidation in a wide array of sample types. However, MDA itself participates in reactions with molecules other than TBA and is a catabolic substrate. Only certain lipid peroxidation products generate MDA (invariably with low yields), and MDA is neither the sole end product of fatty peroxide formation and decomposition nor a substance generated exclusively through lipid peroxidation. Many factors (e.g., stimulus for and conditions of peroxidation) modulate MDA formation from lipid. Additional factors (e.g., TBA-test reagents and constituents) have profound effects on test response to fatty peroxide-derived MDA. The TBA test is intrinsically nonspecific for MDA; nonlipid-related materials as well as fatty peroxide-derived decomposition products other than MDA are TBA positive. These and other considerations from the extensive literature on MDA. TBA reactivity, and oxidative lipid degradation support the conclusion that MDA determination and the TBA test can offer, at best, a narrow and somewhat empirical window on the complex process of lipid peroxidation. The MDA content and/or TBA reactivity of a system provides no information on the precise structures of the "MDA precursor(s)," their molecular origins, or the amount of each formed. Consequently, neither MDA determination nor TBA-test response can generally be regarded as a diagnostic index of the occurrence/extent of lipid peroxidation, fatty hydroperoxide formation, or oxidative injury to tissue lipid without independent chemical evidence of the analyte being measured and its source. In some cases, MDA/TBA reactivity is an indicator of lipid peroxidation; in other situations, no qualitative or quantitative relationship exists among sample MDA content, TBA reactivity, and fatty peroxide tone. Utilization of MDA analysis and/or the TBA test and interpretation of sample MDA content and TBA test response in studies of lipid peroxidation require caution, discretion, and (especially in biological systems) correlative data from other indices of fatty peroxide formation and decomposition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don't.

              Over the past decade, reactive oxygen species (ROS) and nitric oxide (NO) derivatives have been established as physiological modulators of skeletal muscle function. This mini-review addresses the roles of these molecules as endogenous regulators of muscle contraction. The article is organized in two parts. First, established concepts are briefly outlined. This section provides an overview of ROS production by muscle, antioxidant buffers that oppose ROS effects, enzymatic synthesis of NO in muscle, the effects of endogenous ROS on contractile function, and NO as a contractile modulator. Second, a selected group of unresolved topics are highlighted. These more controversial issues include putative source(s) of regulatory ROS, the relative importance of the two NO synthase isoforms constitutively coexpressed by muscle fibers, molecular mechanisms of ROS and NO action, and the physiological relevance of redox regulation. By discussing current questions, as well as the established paradigm, this article is intended to further debate and stimulate research in this area.
                Bookmark

                Author and article information

                Contributors
                +43 512 50751860 , bernd.pelster@uibk.ac.at
                Journal
                J Comp Physiol B
                J. Comp. Physiol. B, Biochem. Syst. Environ. Physiol
                Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0174-1578
                1432-136X
                4 May 2016
                4 May 2016
                2016
                : 186
                : 7
                : 867-877
                Affiliations
                [1 ]Institut für Zoologie, Leopold-Franzens-Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
                [2 ]Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
                [3 ]Thünen Institute of Fisheries Ecology, Hamburg, Germany
                Author notes

                Communicated by G. Heldmaier.

                Article
                994
                10.1007/s00360-016-0994-0
                5009179
                27146148
                6df86278-8c21-4240-b2aa-39c6cf975b8f
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 21 January 2016
                : 22 April 2016
                : 23 April 2016
                Funding
                Funded by: FWF
                Award ID: P26363-B25
                Award Recipient :
                Categories
                Original Paper
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Anatomy & Physiology
                reactive oxygen species,swimbladder,european eel,anguillicola crassus
                Anatomy & Physiology
                reactive oxygen species, swimbladder, european eel, anguillicola crassus

                Comments

                Comment on this article