9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development of a Murine Infection Model with Leishmania killicki, Responsible for Cutaneous Leishmaniosis in Algeria: Application in Pharmacology

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Algeria, Leishmania infantum, Leishmania major, and Leishmania killicki ( Leishmania tropica) are responsible for cutaneous leishmaniosis. We established a murine model of L. killicki infection to investigate its infective capacity, some immunophysiopathological aspects, and its suitability for pharmacological purposes. Following the injection of L. major or L. killicki metacyclic promastigotes in the ear dermis of BALB/c mice, the course of infection was followed. The infection with L. killicki caused slower lesion formation than with L. major. The presence of L. killicki or L. major DNA and parasites was detected in the ear dermis and in lymph nodes, spleen, and liver. Lesions induced by L. killicki were nonulcerative in their aspect, whereas those caused by L. major were highly ulcerative and necrotic, which matches well with the lesion phenotype reported in humans for L. killicki and L. major, respectively. The treatment of L. killicki lesions by injection of Glucantime® significantly reduced the lesion thickness and parasite burden. Ear dermal injection of BALB/c mice constitutes a model to study lesions physiopathology caused by L. killicki and presents interest for in vivo screening of new compounds against this pathogen, emerging in Algeria.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis

          We have developed a model of cutaneous leishmaniasis due to Leishmania major that seeks to mimic the natural conditions of infection. 1,000 metacyclic promastigotes were coinoculated with a salivary gland sonicate (SGS) obtained from a natural vector, Phlebotomus papatasii, into the ear dermis of naive mice or of mice preexposed to SGS. The studies reveal a dramatic exacerbating effect of SGS on lesion development in the dermal site, and a complete abrogation of this effect in mice preexposed to salivary components. In both BALB/c and C57Bl/6 (B/6) mice, the dermal lesions appeared earlier, were more destructive, and contained greater numbers of parasites after infection in the presence of SGS. Furthermore, coinoculation of SGS converted B/6 mice into a nonhealing phenotype. No effect of SGS was seen in either IL-4– deficient or in SCID mice. Disease exacerbation in both BALB/c and B/6 mice was associated with an early (6 h) increase in the frequency of epidermal cells producing type 2 cytokines. SGS did not elicit type 2 cytokines in the epidermis of mice previously injected with SGS. These mice made antisaliva antibodies that were able to neutralize the ability of SGS to enhance infection and to elicit IL-4 and IL-5 responses in the epidermis. These results are the first to suggest that for individuals at risk of vector-borne infections, history of exposure to vector saliva might influence the outcome of exposure to transmitted parasites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation.

            At the end of their growth in the sand fly, Leishmania parasites differentiate into the infective metacyclic promastigote stage, which is transmitted to the mammalian host. Thus, in experimental studies of parasite infectivity toward animals or macrophages, the use of purified metacyclics is generally preferred. While metacyclics of several Leishmania species can be efficiently purified with the aid of lectins or monoclonal antibodies, which differentially exploit stage-specific differences in the structure of the abundant surface glycolipid lipophosphoglycan (LPG), such reagents are unavailable for most species and they are unsuitable for studies involving LPG-deficient mutants. Here we describe a simple density gradient centrifugation method, which allows the rapid purification of infective metacyclic parasites from both wild-type and LPG-deficient Leishmania major. The purified metacyclic promastigotes are authentic, as judged by criteria such as their morphology, expression of the metacyclic-specific gene SHERP, and ability to invade and replicate within macrophages in vitro. Preliminary studies suggest that this method is applicable to other Leishmania species including L. donovani. Copyright 2001 Elsevier Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A natural model of Leishmania major infection reveals a prolonged "silent" phase of parasite amplification in the skin before the onset of lesion formation and immunity.

              A model of Leishmania major infection in C57BL/6 mice has been established that combines two main features of natural transmission: low dose (100 metacyclic promastigotes) and inoculation into a dermal site (the ear dermis). The evolution of the dermal lesion could be dissociated into two distinct phases. The initial "silent" phase, lasting 4-5 wk, favored establishment of the peak load of parasites in the dermis in the absence of lesion formation or any overt histopathologic changes in the site. The second phase corresponds to the development of a lesion associated with an acute infiltration of neutrophils, macrophages, and eosinophils into the dermis and was coincident with the killing of parasites in the site. The onset of immunity/pathology was correlated with the appearance of cells staining for IL-12p40 and IFN-gamma in the epidermal compartment, and an expansion of T cells capable of producing IFN-gamma in the draining lymph node. Parasite growth was not enhanced over the first 4.5 wk in anti-CD4-treated mice, SCID mice, or C57BL/6 mice deficient in IL-12p40, IFN-gamma, CD40 ligand, or inducible NO synthase. These mice all failed to ultimately control infection in the site, but in some cases (anti-CD4 treated, IL-12p40-/-, CD40 ligand-/-, and SCID) high dermal parasite loads were associated with little or no pathology. These results extend to a natural infection model a role for Th1 cells in both acquired resistance and lesion formation, and document the remarkable avoidance of this response during a prolonged phase of parasite amplification in the skin.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                2 February 2016
                : 2016
                : 7985104
                Affiliations
                1Laboratoire d'Eco-Épidemiologie Parasitaire et Génétique des Populations, Institut Pasteur d'Algerie, Route de Petit Staouéli, Dely Brahim, Algiers, Algeria
                2Unité Mixte de Recherche IRD 224 MiVegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
                3Laboratoire de Biochimie Analytique et Biotechnologies, Université Mouloud Mameri de Tizi-Ouzou, Algeria
                4Ecole Nationale Supérieure Vétérinaire, Hassan Badi, BP 161, El Harrach, Algiers, Algeria
                5Unité Mixte de Recherche IRD 177 InterTryp (“Interactions Hôtes-Vecteurs-Parasites-Environnement dans les Maladies Tropicales Négligées dues aux Trypanosomatides”), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
                Author notes

                Academic Editor: Chiara Palmieri

                Article
                10.1155/2016/7985104
                4754473
                26949705
                6d7310da-b302-444f-b3c8-4eae7b12cd23
                Copyright © 2016 Naouel Eddaikra et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 September 2015
                : 30 November 2015
                : 6 January 2016
                Categories
                Research Article

                Comments

                Comment on this article