9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in nanotechnology have led to the development of novel orthopedic implant materials that not only have better cytocompatibility properties but can also be used as unique drug delivery platforms. In the present study, currently used titanium was anodized to possess nanotubular surface structures (80 nm inner diameter and 200 nm deep) capable of drug delivery. Such anodized nanotubular titanium surfaces promote bone cell functions (such as adhesion and differentiation) in vitro and in vivo compared with unanodized titanium. To achieve local drug delivery, anodized titanium with nanotubular structures were loaded with penicillin-based antibiotics using a co-precipitation method in which drug molecules were mixed in simulated body fluid to collectively precipitate with calcium phosphate crystals. Results showed for the first time that such co-precipitated coatings on anodized nanotubular titanium could release drug molecules for up to 3 weeks whereas previous studies have demonstrated only a 150-minute release of antibiotics through simple physical adsorption. Furthermore, drug release using co-precipitation from anodized nanotubular titanium was determined to be a diffusion process dependent on first-order kinetics. In addition, contrary to conventional thinking that penicillin-based drug release should decrease cell functions (including both bacteria and mammalian cells), results of this study showed similar osteoblast (bone-forming cell) adhesion between non-drug loaded and drug loaded precipitated calcium phosphate coatings on anodized titanium. Due to the above, these findings represent a promising surface treatment for titanium that could be used for local drug delivery for improving orthopedic applications and, thus, should be studied further.

          Related collections

          Author and article information

          Journal
          J. Biomed. Mater. Res. Part B Appl. Biomater.
          Journal of biomedical materials research. Part B, Applied biomaterials
          Wiley-Blackwell
          1552-4981
          1552-4973
          Nov 2009
          : 91
          : 2
          Affiliations
          [1 ] Division of Engineering, Brown University, Providence, Rhode Island 02912, USA.
          Article
          10.1002/jbm.b.31433
          19582847
          6d446dfd-c6be-48e5-acac-39d461a92438
          History

          Comments

          Comment on this article