Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Susceptibility of Angiostrongylus cantonensis Larvae to Anthelmintic Drugs

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human helminthiasis affects approximately one in five people in the world and disproportionally affects the poorest and most deprived communities. Human angiostrongyliasis, caused by nematode Angiostrongylus cantonensis, is a neglected emerging disease with escalating importance worldwide. Chemotherapy is the main control method for helminthiasis, but the therapeutic arsenal is limited. This study aimed to evaluate the antiparasitic and molecular properties of the major available anthelmintic drugs against A. cantonensis in vitro. The first-stage larvae (L1), isolated from feces of an A. cantonensis-infected rat, were exposed to a set of 12 anthelmintic drugs in vitro. The larvae were monitored, and the concentration- and time-dependent viability alterations were determined. From 12 anthelmintic drugs, six (ivermectin, salamectin, moxidectin, pyrantel pamoate, albendazole and levamisole) were identified to affect the viability of A. cantonensis. The macrocyclic lactones (ivermectin, salamectin, moxidectin) and the imidazothiazole levamisole, were the most effective drugs, with IC 50 ranging from 2.2 to 2.9 µM and a rapid onset of action. Albendazole, the most widely used anthelmintic in humans, had a slower onset of action, but an IC 50 of 11.3 µM was achieved within 24 h. Molecular properties studies suggest that a less lipophilic character and low molecular weight could be favorable for the biological activity of the non-macrocyclic molecules. Collectively, our study revealed that macrocyclic lactones, levamisole, pyrantel pamoate, and albendazole are important anthelmintic agents against A. cantonensis. The results of this in vitro study also suggest that A. cantonensis L1 may be a particularly sensitive and useful model for anthelmintic studies.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis

          Objective To evaluate efficacies of anthelmintic drugs against soil transmitted helminths in terms of cure rates and egg reduction rates. Design Systematic review and network meta-analysis. Data Sources PubMed, ISI Web of Science, Embase, ScienceDirect, the Cochrane Central Register of Clinical Trials, and the World Health Organization library database from 1960 until 31 December 2016. Study selection Randomised controlled trials evaluating the efficacy of a single dose regimen of albendazole, mebendazole, levamisole, and pyrantel pamoate against Ascaris lumbricoides, hookworm (Necator americanus and Ancylostoma duodenale) and Trichuris trichiura. The primary outcomes included cure rates analysed by network meta-analysis with mixed logistic regression models and egg reduction rates with mixed linear models. Results 55 and 46 randomised controlled trials were included in the analysis of cure rates and egg reduction rates, respectively. All drugs were highly efficacious against A lumbricoides. Albendazole showed the highest efficacy against hookworm infections with a cure rate of 79.5% (95% confidence interval 71.5% to 85.6%) and an egg reduction rate of 89.6% (81.9% to 97.3%). All drugs had low efficacy against T trichiura, with mebendazole showing the highest cure rate of 42.1% (25.9% to 60.2%) and egg reduction rate of 66.0% (54.6% to 77.3%). Estimates for the years 1995 and 2015 showed significant reductions in efficacy of albendazole against T trichiura: by 2015 the egg reduction rates fell from 72.6% (53.7% to 91.5%) to 43.4% (23.5% to 63.3%; P=0.049) and the cure rates fell from 38.6% (26.2% to 52.7%) to 16.4 (7.7% to 31.3%; P=0.027). Conclusions All four currently recommended drugs show limitations in their efficacy profile. While only albendazole showed good efficacy against hookworm infection, all drugs had low efficacy against T trichiura. The decrease in efficacy of albendazole against T trichiura over the past two decades is of concern. The findings indicate the need for strengthening efforts to develop new drug treatments, with a particular focus on drugs against T trichiura.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Opportunities and challenges in antiparasitic drug discovery.

            New antiparasitic drugs are urgently needed to treat and control diseases such as malaria, leishmaniasis, sleeping sickness and filariasis, which affect millions of people each year. However, because the majority of those infected live in countries in which the prospects of any financial return on investment are too low to support market-driven drug discovery and development, alternative approaches are needed. In this article, challenges and opportunities for antiparasitic drug discovery are considered, highlighting some of the progress that has been made in recent years, partly through scientific advances, but also by more effective partnership between the public and private sectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unresolved issues in anthelmintic pharmacology for helminthiases of humans.

              Helminth infections are an important constraint on the health and development of poor children and adults. Anthelmintic treatment programmes provide a safe and effective response, and increasing numbers of people are benefitting from these public health initiatives. Despite decades of clinical experience with anthelmintics for the treatment of human infections, relatively little is known about their clinical pharmacology. All of the drugs were developed initially in response to the considerable market for veterinary anthelmintics in high- and middle-income countries. In contrast, the greatest burden caused by these infections in humans is in resource-poor settings and as a result there has been insufficient commercial incentive to support studies on how these drugs work in humans, and how they should best be used in control programmes. The advent of mass drug administration programmes for the control of schistosomiasis, lymphatic filariasis, onchocerciasis and soil-transmitted helminthiases in humans increases the urgency to better understand and better monitor drug resistance, and to broaden the currently very narrow range of available anthelmintics. This provides fresh impetus for developing a comprehensive research platform designed to improve our understanding of these important drugs, in order to bring the scientific knowledge base supporting their use to a standard equivalent to that of drugs commonly used in developed countries. Furthermore, a better understanding of their clinical pharmacology will enable improved therapy and could contribute to the discovery of new products. Copyright 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                21 June 2022
                2022
                : 13
                : 901459
                Affiliations
                [1] 1 Center for Neglected Diseases Research , Guarulhos University , Guarulhos, Brazil
                [2] 2 Laboratory of Medicinal and Computational Chemistry , Center for Research and Innovation in Biodiversity and Drug Discovery , Physics Institute of Sao Carlos , University of São Paulo , São Carlos, Brazil
                [3] 3 Department of Clinical Tropical Medicine , Faculty of Tropical Medicine , Mahidol University , Bangkok, Thailand
                Author notes

                Edited by: Andrew R. Williams, University of Copenhagen, Denmark

                Reviewed by: Ayodhia Pitaloka, University of North Sumatra, Indonesia

                Claude Charvet, Institut National de Recherche Pour l’agriculture, l’alimentation et l’environnement (INRAE), France

                *Correspondence: Polrat Wilairatana, polrat.wil@ 123456mahidol.ac.th ; Josué De Moraes, moraesnpdn@ 123456gmail.com

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                901459
                10.3389/fphar.2022.901459
                9255552
                35800438
                6cf9e6c6-fc13-4527-8041-641268fe944b
                Copyright © 2022 Roquini, Silva, Ferreira, Andricopulo, Wilairatana and De Moraes.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 March 2022
                : 31 May 2022
                Funding
                Funded by: Fundação de Amparo à Pesquisa Do Estado de São Paulo , doi 10.13039/501100001807;
                Award ID: 201622488-3
                Funded by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior , doi 10.13039/501100002322;
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico , doi 10.13039/501100003593;
                Categories
                Pharmacology
                Brief Research Report

                Pharmacology & Pharmaceutical medicine
                anthelmintic properties,antiparasitic activitiy,drug discovery,pharmacology of anthelmintics,helmithiasis,phenotypic screening

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content492

                Cited by7

                Most referenced authors224