19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The New Generation Planetary Population Synthesis (NGPPS) : V. Predetermination of planet types in global core accretion models

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context.State-of-the-art planet formation models are now capable of accounting for the full spectrum of known planet types. This comes at the cost of an increasing complexity of the models, which calls into question whether established links between their initial conditions and the calculated planetary observables are preserved.

          Aims.In this paper, we take a data-driven approach to investigate the relations between clusters of synthetic planets with similar properties and their formation history.

          Methods.We trained a Gaussian mixture model on typical exoplanet observables computed by a global model of planet formation to identify clusters of similar planets. We then traced back the formation histories of the planets associated with them and pinpointed their differences. Using the cluster affiliation as labels, we trained a random forest classifier to predict planet species from properties of the originating protoplanetary disk.

          Results.Without presupposing any planet types, we identified four distinct classes in our synthetic population. They roughly correspond to the observed populations of (sub-)Neptunes, giant planets, and (super-)Earths, plus an additional unobserved class we denote as “icy cores”. These groups emerge already within the first 0.1 Myr of the formation phase and are predicted from disk properties with an overall accuracy of >90%. The most reliable predictors are the initial orbital distance of planetary nuclei and the total planetesimal mass available. Giant planets form only in a particular region of this parameter space that is in agreement with purely analytical predictions. Including N-body interactions between the planets decreases the predictability, especially for sub-Neptunes that frequently undergo giant collisions and turn into super-Earths.

          Conclusions.The processes covered by current core accretion models of planet formation are largely predictable and reproduce the known demographic features in the exoplanet population. The impact of gravitational interactions highlights the need for N-body integrators for realistic predictions of systems of low-mass planets.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimating the Dimension of a Model

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Silhouettes: A graphical aid to the interpretation and validation of cluster analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hierarchical Grouping to Optimize an Objective Function

              Joe Ward (1963)
                Bookmark

                Author and article information

                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                December 2021
                December 06 2021
                December 2021
                : 656
                : A73
                Article
                10.1051/0004-6361/202140551
                6ced5e47-1cb9-46b6-bb7e-1dd83bb88cf9
                © 2021

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article